AI Health Chatbots for Patient Engagement

AI Health Chatbots for Patient Engagement

AI Health Tech

Have you ever wished you could get instant medical advice without waiting for a doctor’s appointment? Or maybe you’ve found yourself wondering about a symptom in the middle of the night? Well, you’re not alone, and that’s where AI health chatbots come in. 

The market segment for chatbots is expected to grow from $196 million in 2022 to approximately $1.2 billion by 2032 (Clark & Bailey, 2024). These digital health assistants are changing the game in healthcare, offering support and information around the clock. But what exactly are they, and how do they work? 

Contents

What Are AI Health Chatbots?

AI health chatbots are smart computer programs that help patients with health-related information and support. These virtual health assistants use advanced technologies like natural language processing (NLP) and machine learning (ML). NLP and ML allows them to understand context and emotions in conversations, and respond to user queries in a human-like manner (Karlović, 2024).

Think of the virtual health assistant as your personal health companion to (Laranjo et al., 2018):

  • Answer basic health questions
  • Provide information about symptoms and conditions
  • Offer medication reminders
  • Guide you through simple diagnostic processes

Some popular AI health chatbots include:

Now that we understand the concept of AI health chatbots, let’s explore the various advantages they bring to healthcare.

Benefits of AI Health Chatbots

AI health chatbots have several advantages for both patients and healthcare providers. 

24/7 availability

One of the most significant advantages of AI health chatbots is their round-the-clock availability. Have a health concern at 2 AM? Your chatbot is there to help, providing instant support when you need it. 

Cost reduction

Chatbots are mostly free for patients. Some apps are covered by insurance when prescribed by a health provider (Clark & Bailey, 2024).

By handling routine inquiries and preliminary assessments, chatbots can significantly reduce healthcare costs, especially when the patient does not have to see a health provider in person. They free up health providers for more complex tasks, leading to more efficient resource allocation.

For example, GlaxoSmithKline launched 16 virtual assistants within 10 months, resulting in improved customer satisfaction and employee productivity (Winchurch, 2020).

Improved patient engagement and satisfaction

Chatbots make it easier for patients to engage with their health–even for older adults (Clark & Bailey, 2024). They provide a low-barrier way to ask questions and learn about health topics, improving overall health literacy (Bickmore et al., 2016). They’re also easier to use than a traditional patient portal or telehealth system, which saves time.

Faster triage 

In an emergency, every second counts. AI chatbots can quickly assess symptoms and help determine the urgency of a situation, potentially saving lives by ensuring rapid response to critical cases (Razzaki et al., 2018).

The benefits we’ve discussed here come from a range of key features that AI health chatbots offer. Let’s take a closer look at these capabilities.

Key Features of AI Chatbots in Healthcare

AI health chatbots come packed with features designed to support various aspects of healthcare. Some of the uses of health chatbots include (Clark & Bailey, 2024):

  • Physical wellbeing
  • Chronic conditions
  • Mental health
  • Substance use disorders
  • Pregnancy 
  • Sexual health
  • Public health

Let’s discuss some of the use cases and applications for AI health chatbots.

Appointment scheduling

AI chatbots can manage appointments, allowing patients to easily book, reschedule, or cancel appointments without human intervention. It’s usually easier than doing so in a patient portal.

Symptom checking and preliminary diagnosis

Many chatbots offer an online symptom checker. You input your symptoms, and the chatbot asks follow-up questions to provide a preliminary assessment. While this doesn’t replace a doctor’s diagnosis, it can help you decide if you need to seek immediate medical attention (Semigran et al., 2015).

Medication reminders and management

Pink pill box

Forget to take your pills? AI chatbots can send timely reminders, helping you stay on top of your medication schedule. Some even track your medication history and can alert you to potential drug interactions (Brar Prayaga et al., 2019).

Post-op care and chronic disease management

After an operation or minor surgery, a chatbot can guide the patient through the recovery process at any time, day or night. It can also answer questions about symptoms and concerns related to a chronic illness (ScienceSoft, n.d.). 

Mental health support 

AI chatbots are increasingly being used to provide mental health support. They can offer coping strategies, mood tracking, and even cognitive behavioral therapy exercises. While they don’t replace professional help, they can be a valuable first line of support (Fitzpatrick et al., 2017).

Health tracking and personalized recommendations 

Woman checking iphone with Apple watch

AI chatbots can track your health data over time by integrating with wearable devices and apps. They can then provide personalized health recommendations based on your activity levels, sleep patterns, and other health metrics (Stein & Brooks, 2017).

Healthcare systems can successfully implement AI chatbots by following a careful approach, as we’ll discuss next.

How to Integrate AI Chatbots in Healthcare Systems

Hand holding phone with AI health chatbot conversation

Integrating AI health chatbots into existing healthcare systems requires careful planning and execution. Here’s a roadmap for successful implementation (Palanica et al., 2019 & Nadarzynski et al., 2019):

  1. Assess Needs and Set Goals: Before implementing a chatbot, healthcare providers should clearly define what they hope to achieve. Is the goal to reduce wait times, improve patient engagement, or streamline triage processes?
  1. Choose the Right Solution: Not all chatbots are created equal. Select a solution that aligns with your goals and integrates well with your existing systems.
  1. Ensure Data Security: Implement robust security measures to protect patient data. This includes encryption, secure authentication processes, and regular security audits.
  1. Train Healthcare Providers: It’s crucial to train your staff on how to work alongside these AI systems. They should understand the chatbot’s capabilities and limitations.
  1. Educate Patients: Clear communication with patients about the role and capabilities of the chatbot is essential. Set realistic expectations and provide guidance on how to use the system effectively.
  1. Start Small and Scale: Begin with a pilot program, gather feedback, and make improvements before rolling out the chatbot more broadly.
  1. Continuous Monitoring and Improvement: Regularly assess the chatbot’s performance. Are patients finding it helpful? Are there common issues or misunderstandings? Use this data to continually refine and improve the system.
  1. Measure Impact: Track key performance indicators (KPIs) to measure the impact of the chatbot. This might include metrics like patient satisfaction scores, reduction in wait times, or cost savings.

While AI health chatbots offer impressive features and benefits, it’s important to acknowledge and address the challenges that come with using them in healthcare.

Addressing Concerns and Limitations of AI Health Chatbots

While AI health chatbots offer numerous benefits, they also come with their fair share of challenges and limitations. It’s important to be aware of these as we continue to integrate these technologies into our healthcare systems.

Accuracy concerns 

One of the primary concerns with AI health chatbots is the potential for misdiagnosis. While these systems are becoming increasingly sophisticated, they’re not infallible. A chatbot might misinterpret symptoms or fail to consider important contextual information that a human doctor would catch (Fraser et al., 2018).

Another reason chatbots could share inaccurate information is that AI health chatbots use fixed datasets, which may not include the latest medical info. Unlike doctors who can access current data, chatbots might give outdated advice on health topics (Clark & Bailey, 2024).

Data privacy and security 

Hacker in a red hoodie

Healthcare data is highly sensitive, and the use of AI chatbots raises important questions about data privacy. How is patient data stored and protected? Who has access to the information shared with these chatbots? These are critical issues that need to be addressed to ensure patient trust and comply with regulations like HIPAA (Luxton, 2019).

Federated learning is a new way to train AI models that keeps data private. It lets different groups work together on an AI model without sharing their actual data. Instead, each group trains the model on their own computers using their own data. They only share updates to the model, not the data itself. Hospitals and researchers can team up to create better AI models while keeping patient information safe and private (Sun & Zhou, 2023). 

Ethical considerations 

The use of AI in healthcare raises several ethical questions. For instance, how do we ensure that these systems don’t perpetuate biases in healthcare? There’s also the question of accountability – who’s responsible if a chatbot provides incorrect advice that leads to harm (Vayena et al., 2018)?

Bias in AI Algorithms

Illustration of a smiling chatbot

AI chatbots in healthcare raise concerns about bias and fairness. If the data used to train these chatbots isn’t diverse or has built-in biases, the chatbots might make unfair decisions. This could lead to some groups getting worse healthcare.

Bias can come from many sources, like choosing the wrong data features or having unbalanced data. Sometimes, chatbots might learn the training data too well and can’t handle new situations.

To fix these problems, we need to be aware of possible biases, work to prevent them, and keep checking chatbots after they’re in use. This helps ensure AI chatbots benefit everyone equally in healthcare (Sun & Zhou, 2023). 

Integration challenges 

Implementing AI chatbots into existing healthcare systems isn’t always straightforward. There can be technical challenges in integrating chatbots with electronic health records (EHRs) and other healthcare IT systems. Ensuring seamless data flow while maintaining security is a complex task (Miner et al., 2020).

Patient trust 

Building and maintaining patient trust is crucial for the success of AI health chatbots. Some patients may be hesitant to share personal health information with a machine, preferring the human touch of traditional healthcare interactions.

Trustworthy AI (TAI) helps explain how AI chatbots work, balancing complex math with user-friendly results. It’s important for building trust in AI systems. While progress has been made, more work is needed to make AI chatbots more transparent and trustworthy (Sun & Zhou, 2023).

Doctors and nurses do more than diagnose–they offer comfort and build trust with patients. AI chatbots can’t replace this human touch or handle complex medical issues that need deep expertise.

It’s not all doom and gloom! Exciting trends are shaping the future of AI health chatbot technology.

AI chatbots are useful medical tools, especially where healthcare access is limited. The combo of AI efficiency and human empathy can improve healthcare. The future likely involves doctors handling complex cases and emotional care, with chatbots supporting them, depending on tech advances, acceptance, and regulations (Altamimi et al., 2023). Here are some exciting trends to watch.

Advanced NLP 

Future chatbots will likely have an even better understanding of context and nuance in language. They might be able to detect subtle cues in a patient’s language that could indicate underlying health issues.

Integration with IoT and wearables 

man checking fitness watch with cell phone

As the Internet of Things (IoT) expands in healthcare, chatbots will likely become more integrated with wearable devices and smart home technology. Imagine a chatbot that can access real-time data from your smartwatch to provide more accurate health advice.

Personalized medicine 

AI chatbots could play a crucial role in the move towards personalized medicine. By analyzing vast amounts of patient data, they could help tailor treatment plans to individual genetic profiles and lifestyle factors.

Enhanced diagnostic capabilities 

While current chatbots are limited to preliminary assessments, future versions might have more advanced diagnostic capabilities. They could potentially analyze images or audio recordings to aid in diagnosis.

Support for clinical trials 

AI chatbots could streamline the process of clinical trials by helping to recruit suitable participants, monitor adherence to trial protocols, and collect data.

Conclusion

AI health chatbots are making healthcare easier to access, more personal, and more efficient. They offer 24/7 support, lower costs, and get patients more involved in their health. But there are still issues to solve, like making sure they’re accurate, keeping data private, and fitting them into current healthcare systems.

As tech improves, these chatbots will get smarter and play a bigger role in healthcare. It’s important for everyone – doctors and patients – to keep up with these changes.

Whether you work in healthcare or you’re just curious, now’s the time to try out these chatbots. By staying informed, we can use technology to make healthcare better, without losing the human connection.

Have you used AI health chatbots before? What are your thoughts on them? 

References

AI-Powered Chatbots for Healthcare. (n.d.) ScienceSoft. Retrieved from https://www.scnsoft.com/healthcare/chatbots

Altamimi, I., Altamimi, A., Alhumimidi, A. S., Altamimi, A., & Temsah, H. (2023). Artificial Intelligence (AI) Chatbots in Medicine: A Supplement, Not a Substitute. Cureus, 15(6). doi.org/10.7759/cureus.40922

Bickmore, T. W., Utami, D., Matsuyama, R., & Paasche-Orlow, M. K. (2016). Improving access to online health information with conversational agents: a randomized controlled experiment. Journal of Medical Internet Research, 18(1), e1.

Brar Prayaga, R., Jeong, E. W., Feger, E., Noble, H. K., Kmiec, M., & Prayaga, R. S. (2019). Improving refill adherence in Medicare patients with tailored and interactive mobile text messaging: pilot study. JMIR mHealth and uHealth, 7(1), e11429.

Clark, M. & Bailey, S. (2024). Chatbots in Health Care: Connecting Patients to Information. CADTH Horizon Scans. Canadian Agency for Drugs and Technologies in Health. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK602381/

Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Mental Health, 4(2), e19.

Fraser, H., Coiera, E., & Wong, D. (2018). Safety of patient-facing digital symptom checkers. The Lancet, 392(10161), 2263-2264.

Karlović, M. (2024). 14 ways chatbots can elevate the healthcare experience. Infobip. Retrieved from https://www.infobip.com/blog/healthcare-ai-chatbot-examples

Laranjo, L., Dunn, A. G., Tong, H. L., Kocaballi, A. B., Chen, J., Bashir, R., … & Coiera, E. (2018). Conversational agents in healthcare: a systematic review. Journal of the American Medical Informatics Association, 25(9), 1248-1258.

Luxton, D. D. (2019). Ethical implications of conversational agents in global public health. Bulletin of the World Health Organization, 97(4), 254.

Miner, A. S., Laranjo, L., & Kocaballi, A. B. (2020). Chatbots in the fight against the COVID-19 pandemic. NPJ Digital Medicine, 3(1), 1-4.

Nadarzynski, T., Miles, O., Cowie, A., & Ridge, D. (2019). Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study. Digital Health, 5, 2055207619871808.

Palanica, A., Flaschner, P., Thommandram, A., Li, M., & Fossat, Y. (2019). Physicians’ Perceptions of Chatbots in Health Care: Cross-Sectional Web-Based Survey. Journal of Medical Internet Research, 21(4), e12887.

Razzaki, S., Baker, A., Perov, Y., Middleton, K., Baxter, J., Mullarkey, D., … & Majeed, A. (2018). A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis. arXiv preprint arXiv:1806.10698.

Semigran, H. L., Linder, J. A., Gidengil, C., & Mehrotra, A. (2015). Evaluation of symptom checkers for self diagnosis and triage: audit study. BMJ, 351, h3480.

Stein, N., & Brooks, K. (2017). A fully automated conversational artificial intelligence for weight loss: longitudinal observational study among overweight and obese adults. JMIR Diabetes, 2(2), e28.

Sun, G., & Zhou, H. (2023). AI in healthcare: Navigating opportunities and challenges in digital communication. Frontiers in Digital Health, 5. doi.org/10.3389/fdgth.2023.1291132

Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing ethical challenges. PLoS Medicine, 15(11), e1002689.

Winchurch, E. (2020). How GlaxoSmithKline launched 16 virtual assistants in 10 months with watsonx Assistant. IBM. Retrieved from https://www.ibm.com/products/watsonx-assistant/healthcare

Predictive Analytics and AI in Healthcare: Using AI to Predict Patient Outcomes

Predictive Analytics and AI in Healthcare: Using AI to Predict Patient Outcomes

AI Health Tech Med Tech

Health organizations use predictive analytics and AI to make better decisions, create personalized treatment plans, and improve patient outcomes. Let’s discuss their impact on the healthcare industry.

Contents

Understanding Predictive Analytics with AI in Healthcare

Predictive analytics uses statistical methods to analyze medical data. It also finds patterns and trends that can predict what might happen next with an individual patient. But what part does AI play here?

Definition of predictive analytics and its relationship to AI

Predictive analytics involves using statistical methods and algorithms to analyze medical data and make predictions about future patient outcomes or healthcare trends. It’s like having a crystal ball that relies on patient data instead of magic. 

AI enhances predictive analytics in healthcare by automating the analysis process and improving the accuracy of predictions through machine learning and other advanced techniques (Petrova, 2024).

Predictive analytics systems in healthcare

Predictive analytics systems are made up of several key components:

  • Data Collection: Gathering relevant data from various sources like electronic health records (EHRs) and medical devices.
  • Data Preprocessing: Cleaning and organizing medical data to ensure it’s usable.
  • Model Building: Creating statistical models that can analyze the data.
  • Model Validation: Testing the models to ensure they make accurate predictions about patient outcomes.
  • Deployment: Using the models to make predictions in real-world healthcare scenarios.

How AI enhances predictive capabilities

AI takes predictive analytics to the next level. Traditional predictive models might struggle with large datasets or complex patterns, but AI can handle these with ease. 

Examples:

  • Netflix uses AI to predict what shows or movies you might like based on your viewing history, dramatically improving user experience. 
  • IBM Watson Health uses AI to analyze patient data and medical literature to help clinicians make treatment decisions, which enhances patient care.

How machine learning can improve predictions

Machine learning (ML), a subset of AI, is crucial in predictive analytics. It involves training algorithms on historical patient data so they can learn to make predictions on new data. 

Over time, these algorithms improve as they are exposed to more data, making them more accurate and efficient when predicting patient outcomes. This continuous learning process is what makes ML so powerful in predictive analytics. 

Some examples:

  • Amazon uses ML to predict product demand, ensuring that they stock the right products at the right time. 
  • Google Health uses ML to predict patient deterioration in hospitals, allowing for early intervention and improved patient care.
  • A study in Nature conducted by the U.S. Department of Veterans Affairs and the DeepMind team at Google used AI to accurately predict acute kidney injuries up to 48 hours before diagnosis (Suleyman & King, 2019).

Predictive analytics and AI are not just theoretical concepts; they have real-world applications across various industries. Now that we know the basics, let’s see how healthcare providers use these tools in practice.

Real-World Applications of Predictive Analytics and AI

Behavior prediction and resource allocation

Healthcare providers use predictive analytics to understand patient behavior. By analyzing past medical history and treatment adherence, hospitals can predict which patients are likely to miss appointments or not follow their treatment plans. This helps personalize care, improve patient engagement, and allocate resources. 

A couple of examples:

  • Cleveland Clinic uses predictive analytics to identify patients at high risk of readmission, allowing for targeted interventions. 
  • Gundersen Health Systems increased the number of staffed rooms used by 9% using predictive analytics with AI (Becker’s Hospital Review).

Healthcare resource optimization and demand forecasting

Nurse showing notes to doctor near whiteboard

Predictive analytics helps healthcare organizations optimize their resources by forecasting patient demand. 

Hospitals can predict future patient volumes and adjust staffing levels by analyzing admission data and seasonal trends. This reduces costs and ensures that healthcare services are available when patients need them. 

For example, Johns Hopkins Hospital uses predictive analytics to forecast patient admission rates and optimize resource allocation (Chan & Scheulen, 2017).

Treatment outcome prediction and optimization

By analyzing patient data and treatment histories, clinicians can identify:

  • which treatments are likely to be most effective for each patient
  • which patients are at risk of certain diseases 
  • take preventive measures based on what they find

This process improves patient outcomes and reduces healthcare costs. A few examples:

  • Both Mayo Clinic and IBM Watson Health use AI and predictive analytics to diagnose and personalize treatment plans for cancer patients more effectively (IBM, 2019).
  • Hoag Hospital uses an AI-powered platform to predict which patients are at risk of developing sepsis. The result was a 41% decrease in sepsis-related mortality rates (Health Catalyst, n.d.).
  • The City of Hope Medical Center partnered with Syapse to develop a predictive analytics platform with AI to detect patients who are at risk of getting cancer or have a high risk of cancer recurrence (City of Hope, 2020).

Predictive maintenance of medical equipment

Closeup of vitals in the OR

Healthcare facilities use predictive analytics to predict when medical equipment is likely to fail and schedule maintenance as needed. This helps prevent unexpected breakdowns, reduces downtime, and ensures continuous patient care. 

For example, GE Healthcare uses predictive analytics to monitor medical imaging equipment and predict maintenance needs (Business Wire, 2024).

Implementing predictive analytics and AI offers numerous benefits for businesses. We’ll discuss some of the key advantages next.

Benefits of Implementing Predictive Analytics and AI

The ways healthcare organizations use predictive analytics and AI offer several advantages.

Early disease detection and prevention

Healthcare organizations can use predictive analytics to detect diseases early, implement preventive measures, and manage patient risks. This helps in reducing the burden of chronic diseases and improving population health. 

A couple of examples:

Improved decision-making 

Three doctors talking in a hallway

​​

Predictive analytics can uncover hidden patterns and trends in patient data, revealing new insights for clinical decision-making. By identifying these patterns early, healthcare providers can make more informed decisions about patient care. 

For example, Stanford Health Care uses AI-powered predictive analytics to assist doctors in diagnosing complex conditions and recommending personalized treatment plans.

Cost reduction and operational efficiency

By predicting future patient needs and health trends, healthcare organizations can optimize their operations and reduce costs. For example, forecasting patient admissions helps hospitals manage their staffing more efficiently, reducing overtime costs and improving care quality. 

A couple more examples:

  • Kaiser Permanente uses predictive analytics to optimize its supply chain, reducing waste and saving millions in healthcare costs (Pritchard, n.d.).
  • UCI Medical Center has implemented predictive analytics with AI to analyze patient information, including admission rates, length of stay, and diagnosis, to predict future patient demand and ensure sufficient hospital resources (University of California, Irvine, 2021).

In addition, predictive analytics enhanced with AI can help prevent fraudulent insurance claims. Insurance companies can train ML algorithms to determine bad intent at the outset. This could potentially save billions of dollars (NHCAA, n.d.).

Better patient experience and satisfaction

Doctor and patient hands on desk

By understanding future health trends and patterns, health facilities can implement preventive measures and improve patient outcomes. For instance, Intermountain Health uses predictive analytics to reduce hospital-acquired infections, significantly improving patient safety. 

While implementing predictive analytics and AI offers many benefits to health providers and patients, they also come with their own set of considerations to keep in mind.

Challenges and Considerations

Data quality and integration issues

For predictive analytics to be effective, the data used must be accurate and reliable. Poor quality data can lead to inaccurate predictions. In addition, integrating data from different sources can be challenging and time-consuming. 

Privacy and ethical concerns

Hand pulling a folder from chart in dr office

Using predictive analytics in healthcare involves collecting and analyzing large amounts of sensitive patient data, which can raise privacy and ethical concerns. Healthcare organizations must ensure they handle patient data responsibly and comply with regulations like HIPAA. 

Attracting skilled talent 

Implementing predictive analytics requires specialized skills and expertise. Finding and retaining talent with the necessary healthcare analytic skills can be challenging. Many organizations struggle to find data scientists and analysts who can build and maintain predictive models.

Choosing the right tools and technologies

There are numerous predictive analytics tools and technologies available, each with its own strengths and weaknesses. Choosing the right tools can be daunting, especially given the rapid pace of technological advancement in this field.

Overcoming resistance to change within health organizations

Nurse in hallway looking worried

Implementing predictive analytics often involves changing existing processes and systems, which can face resistance from staff. Organizations must manage this change effectively to ensure a smooth transition and adoption of new analytics technologies. 

The field of predictive analytics and AI is constantly evolving. Here are some future trends to watch out for.

Advancements in natural language processing

Natural language processing (NLP) is a branch of AI that deals with understanding and generating human language. Advancements in NLP enable more accurate and efficient analysis of text data, opening up new possibilities for predictive analytics in healthcare:

  • Wearable devices can use edge computing to process patient data in real time and alert healthcare providers to potential emergencies.
  • Chatbots powered by NLP can provide real-time customer support and predict user needs based on their queries.

eXplainable AI for clearer decision-making

Nurse showing notes to dr

eXplainable AI (XAI) aims to make AI models more clear and easy to understand. This can help health providers trust and adopt AI technologies more readily, as they can see how patient care decisions are made. 

For example, healthcare providers can use explainable AI to understand how predictive models diagnose diseases and recommend treatments. This is critical in healthcare, where the rationale behind some decisions may have life-or-death consequences.

Integration with IoT devices

The integration of predictive analytics with Internet of Things (IoT) devices enables healthcare providers to collect and analyze data from a wide range of sources, using wearable technology like smartwatches and fitness trackers (Li et al., 2019). 

This will provide more comprehensive insights into patient health and improve decision-making. For example, smart medical devices could use predictive analytics to monitor patient health in real-time and predict potential complications. 

Democratization of AI and predictive tools

As AI and predictive analytics tools become more user-friendly and accessible, more health organizations can take advantage of these technologies. This will drive innovation and improve patient care across the healthcare industry, from small clinics to large hospital systems.

Conclusion

Predictive analytics and AI are changing the healthcare industry, offering powerful tools to forecast outcomes and make data-driven decisions. By understanding the progress and potential of predictive analytics and AI, along with real-world applications, benefits, challenges, and future trends, health organizations can be better positioned to navigate uncertainties, seize opportunities, and stay ahead of the curve.

References

A tech-based culture shift: How Gundersen achieved prime OR utilization with predictive analytics. Becker’s Hospital Review. Retrieved from https://go.beckershospitalreview.com/hit/a-tech-based-culture-shift-how-gundersen-achieved-prime-or-utilization-with-predictive-analytics

Business Wire. (2024). GE Healthcare Increases Access to Precision Care Tools, Encouraging the Continued Adoption and Practice of More Personalized Medicine Around the World. Yahoo! Finance. Retrieved from https://finance.yahoo.com/news/ge-healthcare-increases-access-precision-164000903.html

Chan, C., & Scheulen, J. (2017). Administrators Leverage Predictive Analytics to Manage Capacity, Streamline Decision-making. ED Management;29(2):19-23.

City of Hope. (2020). City of Hope and Syapse partner to provide precision medicine to cancer patients. Retrieved from https://www.cityofhope.org/city-of-hope-and-syapse-partner-to-provide-precision-medicine-to-cancer-patients

ConsultQD. (2019). Model Reliably Predicts Risk of Hospital Readmissions. Cleveland Clinic. Retrieved from https://consultqd.clevelandclinic.org/model-reliably-predicts-risk-of-hospital-readmissions

Health Catalyst. (n.d.). Predictive sepsis surveillance at Hoag Hospital. Retrieved from  https://www.healthcatalyst.com/success_stories/predictive-sepsis-surveillance-at-hoag-hospital

IBM. (2019). IBM and Mayo Clinic launch Watson-powered clinical trial matching. Retrieved from https://www.ibm.com/blogs/watson-health/ibm-and-mayo-clinic-launch-watson-powered-clinical-trial-matching

Intermountain Health. (2023). Predictive Analytics Important at Intermountain Healthcare.  Retrieved from https://intermountainhealthcare.org/blogs/predictive-analytics-important-at-intermountain-healthcare

Pritchard, J. (n.d.) Kaiser Permanente: Building a Resilient Supply Chain. The Journal of Healthcare Contracting. Retrieved from https://www.jhconline.com/kaiser-permanente-building-a-resilient-supply-chain.html

Li, J., Xie, B., & Sadek, I. (2019). Wearable technology and their implications in healthcare delivery. Health Systems, 8(1), 9-18.

Mount Sinai. (n.d.). From Bench to Bedside: Predicting Who Will Develop Chronic Kidney Disease. Retrieved from https://reports.mountsinai.org/article/neph2022-_1_renalytix-goes-into-clinical-use

Petrova, B. (2024). Predictive Analytics in Healthcare. Reveal. Retrieved from https://www.revealbi.io/blog/predictive-analytics-in-healthcare

Slabodkin, G. (2017). Penn leverages machine learning to identify severe sepsis early. HealthData Management. Retrieved from https://www.healthdatamanagement.com/articles/penn-leverages-machine-learning-to-identify-severe-sepsis-early

Stanford Medicine Catalyst. (n.d.) Catalyst supports innovations across all verticals, spanning the healthcare spectrum. Retrieved from https://smcatalyst.stanford.edu/catalyst-verticals/

Suleyman, M. & King, D. (2019). Using AI to give doctors a 48-hour head start on life-threatening illness. Google DeepMind. Retrieved from https://deepmind.google/discover/blog/using-ai-to-give-doctors-a-48-hour-head-start-on-life-threatening-illness/

The Challenge of Health Care Fraud. (n.d.) National Health Care Anti-Fraud Association (NHCAA). Retrieved from https://www.nhcaa.org/tools-insights/about-health-care-fraud/the-challenge-of-health-care-fraud/

University of California, Irvine. (2021). AI is the future of healthcare. Retrieved from https://www.healthaffairs.org/do/10.1377/hblog20211005.299901/full

Top 10 Medical AI Tools in Healthcare

Top 10 Medical AI Tools in Healthcare

AI Health Tech Med Tech

The integration of AI in healthcare has changed the way we do patient care, diagnosis, and treatment. Studies show that AI-powered diagnostic tools can achieve an accuracy rate from 80% up to 95% for chest X-rays (Seah, J.C.Y. et al., 2021), and from 81% to 99.7% for early oral cancer detection (Al-Rawi et al., 2023). 

This product review describes the leading medical AI tools reshaping the healthcare industry. These cutting-edge solutions leverage advanced technologies like neural networks, machine learning (ML), and quantum computing to enhance clinical decision-making, improve diagnostic accuracy, and streamline healthcare processes.

Contents

1. Viz.ai

Viz.ai is a pioneering AI-powered care coordination platform that has made significant strides in stroke care and other time-sensitive medical conditions. It uses advanced AI algorithms to analyze medical imaging data and facilitate rapid communication for more than 1600 hospitals and healthcare systems.

Quote from a cardiologist at Viz.ai

Key features:

  • Automated CT scan analysis for early stroke detection
  • Real-time notification system for care team coordination
  • Integration with hospital systems for seamless workflow
  • Customizable care protocols for various medical conditions
ProsCons
Rapid stroke detection and treatment initiationRequires integration with existing hospital systems
Improved patient outcomes through faster care coordinationInitial implementation costs may be high
Reduced time to treatment in critical casesOngoing training needed for optimal use

To learn more about Viz.ai or request a demo, visit:

2. DeepScribe

DeepScribe is an AI-powered medical scribe using (ambient clinical intelligence, or ACI) that revolutionizes the way healthcare professionals document patient interactions. They use advanced natural language processing (NLP) and ML algorithms to generate clinical notes from doctor-patient conversations automatically.

Key features:

  • Real-time voice-to-text transcription of medical consultations
  • Automated generation of structured clinical notes
  • Integration with electronic health record (EHR) systems
  • Customizable templates for various medical specialties
Quote from Chief Medical Officer of DeepScribe

ProsCons
Significant time savings for healthcare providersMay require an initial adjustment period for optimal use
Improved accuracy and completeness of medical documentationPotential privacy concerns with audio recording
Reduced administrative burden on physiciansSubscription-based pricing model

To learn more about DeepScribe or schedule a demo, visit:

3. LumineticsCore™ 

LumineticsCore™ (formerly IDx-DR) is an FDA-approved AI diagnostic system designed for the early detection of diabetic retinopathy. Developed by Digital Diagnostics (formerly IDx Technologies), this groundbreaking tool uses deep learning (DL) algorithms to analyze retinal images and quickly provide accurate diagnoses.

Key features:

  • Automated analysis of retinal images for diabetic retinopathy
  • High sensitivity and specificity in detecting referable diabetic retinopathy
  • Integration with existing retinal imaging devices
  • Immediate results for point-of-care decision making
Quote from Digital Diagnostics' CEO

ProsCons
Enables early detection and treatment of diabetic retinopathyLimited to diabetic retinopathy screening
Increases accessibility of screening in primary care settingsRequires specific retinal imaging equipment
Reduces burden on ophthalmologists for routine screeningsMay not detect other eye conditions

To learn more about LumineticsCore™ or inquire about implementation, visit:

4. IBM Watson for Oncology

IBM Watson for Oncology is a cognitive computing system that leverages AI and ML for evidence-based treatment decision support. This powerful tool analyzes large amounts of medical literature, clinical trials, and patient data to provide personalized treatment recommendations.

Key features:

  • Analysis of structured and unstructured medical data
  • Evidence-based treatment recommendations
  • Integration of patient-specific factors in decision-making
  • Continuous learning from new medical research and clinical outcomes

ProsCons
Access to up-to-date, evidence-based treatment optionsRequires ongoing maintenance and updates
Improved consistency in cancer care across institutionsHigh implementation and subscription costs
Supports personalized medicine approachesPotential to over-rely on AI recommendations

To learn more about IBM Watson or request information, visit:

5. Tempus Radiology

Tempus Radiology, part of Tempus AI (formerly Arterys Cardio AI) is a cloud-based AI medical imaging platform that enhances cardiac MRI analysis with AI. It assists radiologists and cardiologists to quickly and accurately assess heart function and diagnose cardiovascular conditions.

Tempus One AI tool

Key features:

  • Automated segmentation and quantification of cardiac structures
  • Rapid analysis of cardiac function and blood flow
  • Cloud-based platform for seamless collaboration
  • Integration with existing picture archiving and communication system (PACS) and electronic medical record (EMR) systems

ProsCons
Significantly reduces time for cardiac MRI analysisRequires high-quality MRI images for optimal results
Improves consistency and accuracy of measurements May require additional training for optimal use
Facilitates remote collaboration among healthcare providers Subscription-based pricing model

To learn more about Tempus Radiology or request a demo, visit:

6. PathAI

PathAI is a cutting-edge AI platform designed to spot unusual patterns in tissue samples, helping clinicians diagnose diseases faster and more accurately.

Key features:

  • Automated tissue analysis and anomaly detection
  • Integration with digital pathology workflows
  • Continuous learning from expert pathologist feedback
  • Support for various types of cancer and other diseases
PathAI Mission Statement
PathAI’s mission statement (from their website)

ProsCons
Improves diagnostic accuracy and consistency Requires digital pathology infrastructure
Reduces turnaround time for pathology results Initial implementation costs may be high
Facilitates collaboration among pathologistsOngoing training needed for optimal use

To learn more about PathAI or inquire about partnerships, visit:

7. Nanox Vision

Nanox Vision (formerly Zebra Medical Vision), offers a comprehensive suite of AI-powered medical imaging solutions that assist radiologists in detecting and diagnosing various conditions. Their tools analyze CT scans, X-rays, and MRIs to identify potential health issues across multiple specialties.

Key features:

  • AI-assisted analysis of various imaging modalities
  • Automated detection of bone health, cardiovascular, and pulmonary conditions
  • Integration with existing PACS and workflow systems
  • Continuous updates with new AI models for emerging conditions
Quote from Nanox

ProsCons
Improves early detection of various medical conditions Requires integration with existing imaging systems
Reduces radiologist workload and improves efficiency May require ongoing subscription fees
Supports population health management initiativesPotential for over-reliance on AI-generated findings

To learn more about Nanox Vision or request a demo, visit:

8. Corti

Corti is an AI-powered platform designed to help emergency dispatchers and healthcare providers identify critical conditions during emergency calls. Using advanced NLP and ML algorithms, Corti can automate documentation and analyze conversations in real-time to provide actionable insights and decision support.

Key features:

  • Real-time analysis of emergency call audio
  • Automated detection of critical conditions like cardiac arrest
  • Integration with emergency dispatch systems
  • Continuous learning from new cases and outcomes
ProsCons
Improves response times for critical emergenciesRequires integration with existing dispatch systems
Enhances decision-making support for dispatchers May raise privacy concerns due to call recording
Provides valuable data for quality improvementOngoing training needed for optimal performance

To learn more about Corti or schedule a demo, visit:

9. Benevolent AI

Benevolent AI is a leading AI company using ML and DL to accelerate drug discovery and development. Their platform analyzes vast amounts of biomedical data to identify potential drug candidates and predict their safety and effectiveness.

Key features:

  • AI-driven analysis of biomedical literature and data
  • Identification of novel drug targets and compounds
  • Prediction of drug effectiveness and potential side effects
  • Continuous learning from new research and clinical data
ProsCons
Accelerates drug discovery process High initial investment required
Identifies potential treatments for rare diseasesComplex implementation process
Reduces costs associated with traditional drug developmentRequires ongoing collaboration with domain experts

To learn more about Benevolent AI or explore partnership opportunities, visit:

10. Qure.ai

Qure.ai is an AI-powered medical imaging company that specializes in developing DL solutions for radiology. Their tools assist healthcare providers in analyzing X-rays, CT scans, and MRIs to detect various conditions and streamline the diagnostic process.

Key features:

  • AI-assisted analysis of chest X-rays and head CT scans
  • Automated detection of lung abnormalities and brain injuries
  • Integration with existing radiology workflows and PACS
  • Continuous updates with new AI models for emerging conditions
ProsCons
Improves early detection of critical conditionsRequires integration with existing imaging systems
Reduces radiologist workload and reporting timeMay require ongoing subscription fees
Supports teleradiology and remote diagnosisPotential for over-reliance on AI-generated findings

To learn more about Qure.ai or request a demo, visit:

Conclusion

These top medical AI software and apps enhance diagnostic accuracy, streamline workflows, and improve patient outcomes. As AI continues to evolve, we can expect even more innovative solutions to emerge

The best AI diagnostic tools offer healthcare providers powerful allies in their quest to deliver top-notch care. Healthcare providers and institutions that embrace these cutting-edge technologies will be well-positioned to deliver superior care and stay at the forefront of medical innovation.

References

Al-Rawi, N., Sultan, A., Rajai, B., Shuaeeb, H., Alnajjar, M., Alketbi, M., Mohammad, Y., Shetty, S. R., & Mashrah, M. A. (2022). The Effectiveness of Artificial Intelligence in Detection of Oral Cancer. International Dental Journal, 72(4), 436-447. https://doi.org/10.1016/j.identj.2022.03.001

Seah, J.C.Y. et al. (2021). Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study. Lancet Digital Health. 3(8),e496-e506. doi.org/10.1016/S2589-7500(21)00106-0

AI Medical Imaging Diagnosis: Improving Accuracy and Efficiency

AI Medical Imaging Diagnosis: Improving Accuracy and Efficiency

Health Tech

Healthcare has made significant strides with AI medical imaging diagnosis. One study showed AI algorithms that achieved an average accuracy of 87.7% in interpreting medical images, rivaling that of expert radiologists (Liu, et al., 2019). 

From X-rays to MRIs, AI is helping medical professionals detect diseases earlier, more accurately, and with greater efficiency. In this article, we’ll explore the fascinating world of AI in medical imaging diagnosis and its impact on patient care.

The Role of AI in Medical Imaging Diagnosis

Medical imaging uses various technologies to see inside the body for diagnosis and treatment. AI in medical imaging refers to the use of computer algorithms to analyze and interpret medical images. This helps healthcare professionals spot issues that might be missed by human eyes alone, improving accuracy in identifying injuries and diseases for diagnosis (Pinto-Coelho, 2023).

What types of medical imaging technologies are being enhanced by AI? Here are some common examples:

  • computed tomography (CT) scans
  • magnetic resonance imaging (MRI) scans
  • Positron mission tomography (PET) scans
  • Ultrasounds
  • X-rays

AI algorithms analyze these images by looking for patterns, anomalies, and specific features that might indicate a particular condition or disease. This process is often faster and more consistent than human analysis alone.

eXplainable AI (XAI) in medical imaging

For AI to be helpful, humans have to be able to interpret its findings. eXplainable AI (XAI) is a set of techniques that make complex AI models easier to understand. It shows how AI makes decisions, and which parts of a medical image influenced the AI’s diagnosis. 

For example, in lung cancer detection from chest X-rays, XAI can highlight areas the AI found significant. This transparency allows healthcare professionals to better understand, trust, and effectively use AI-driven diagnoses. By bridging the gap between AI capabilities and human interpretation, XAI enhances the practical application of AI in medical imaging (Tulsani et al., 2023).

XAI Applications in medical imaging diagnosis

Xray with green scrubs

Some applications of XAI in medical imaging are:

  • Radiology Reports: XAI makes AI-generated radiology reports more understandable. Radiologists can check XAI explanations to verify AI reports and make better decisions (Choy et al., 2018).
  • Cancer Detection: For breast cancer, XAI shows which parts of mammograms influenced AI choices, helping radiologists confirm diagnoses (Rodrigues et al., 2020). In skin cancer detection, XAI explains why AI classifies moles as malignant or benign (Esteva et al., 2017).
  • Neuroimaging: XAI is useful in brain scans for conditions like Alzheimer’s and stroke. It reveals brain regions showing atrophy in Alzheimer’s MRI scans (Korolev et al., 2017) and highlights areas affected by stroke in CT or MRI scans (Chen et al., 2020).
  • Cardiovascular Imaging: XAI clarifies findings in heart imaging. For example, in echocardiograms, it can show heart abnormalities (Huang et al., 2021), and in angiograms, it shows blocked arteries (Xu et al., 2018).
  • Surgical Planning: XAI explains AI assessments of patient anatomy from pre-surgery images. This helps surgeons plan better and understand AI recommendations, improving surgical safety (Vedula et al., 2019).
  • Medical Image Segmentation: In segmentation, XAI helps experts understand how AI outlines specific areas in medical images, useful for planning radiation therapy and surgery (Kohl et al., 2018).

The integration of AI in medical imaging diagnosis brings several significant benefits, which we’ll explore next.

Precision and Efficiency: The Benefits of AI in Medical Imaging Diagnostics

Receptionist at doctor office on phone in blue

What are the key advantages of AI-assisted diagnosis?

  1. Improved accuracy and disease detection
  2. Faster results and increased efficiency
  3. Consistent performance and reduced human error
  4. Ability to detect subtle changes
  5. Support for radiologists in high-volume settings

These benefits lead to better patient care, more effective treatment planning, and potential cost savings in healthcare. Let’s take a closer look at some of these benefits.

Improved diagnostic accuracy and early disease detection

AI can detect subtle changes in images that humans might miss, leading to earlier diagnosis and potentially better outcomes for patients, part of predictive analytics.

A study in Nature Medicine found that an AI system could detect lung cancer on CT scans with a 94.4% accuracy rate, compared to 91% for human radiologists (Ardila et al., 2019). Another study showed that AI can predict Alzheimer’s disease an average of 6 years before clinical diagnosis with 100% sensitivity and 82% specificity using PET scans (Ding et al., 2019).

Accuracy levels aren’t foolproof, however. The accuracy in radiology with AI tools depends on having enough high-quality training data to learn from and make good predictions (Srivastav et al., 2023).

Increased efficiency and reduced workload 

AI can handle routine tasks and initial screenings, allowing radiologists to focus on more complex cases and patient care. 

A study at Massachusetts General Hospital found that an AI system could reduce the time radiologists spend analyzing brain MRIs for tumor progression by up to 60%, potentially saving hours of work each day (Gong et al., 2020).

Reduction in human error and misdiagnosis

By providing a “second opinion,” AI can help reduce the likelihood of misdiagnosis and improve overall diagnostic accuracy.

A 2019 study in The Lancet Digital Health demonstrated that AI algorithms could match or outperform human experts in detecting diseases from medical imaging. The study found that deep learning algorithms correctly detected disease in 87% of cases, compared to 86% for healthcare professionals (Liu et al., 2019).

Better patient care and treatment planning

Doctor and patient hands on desk 2

With more accurate and timely diagnoses, healthcare providers can develop more effective treatment plans tailored to individual patients.

In oncology, AI-assisted imaging analysis has been shown to improve treatment planning accuracy by up to 80% in some cases, leading to more precise radiation therapy and better outcomes for cancer patients (Bibault, 2018).

Cost-effectiveness and resource optimization

By streamlining the diagnostic process, AI can help reduce healthcare costs and optimize the use of medical resources.

A study published in JAMA Network Open estimated that AI-assisted breast cancer screening could reduce unnecessary biopsies by up to 30%, potentially saving millions of dollars in healthcare costs annually (Yala et al., 2021).

Now that we understand the benefits of AI in medical imaging, let’s explore how it applies to different imaging techniques.

Applications of AI Across Medical Image Processing Techniques

Let’s take a closer look at how AI is being applied to different types of medical imaging.

Segmentation

Segmentation is a key part of working with images. It’s about finding the edges of different parts in a picture, either automatically or with some human help. In medical imaging, segmentation is used to tell different types of body tissues apart, identify specific body parts, or find signs of disease. This process helps doctors and researchers understand what they’re seeing in medical images more clearly (Carass et al., 2020).

For example, lesion segmentation in medical imaging is used in dermatology and ophthalmology. While there are many benefits, it faces challenges like class imbalance, where most of the image is non-diseased. Researchers use methods like modified loss functions and balanced datasets to address this. Deep learning algorithms, especially U-net variations, show promise in considering both global and local context (Adamopoulou et al., 2023).

AI detection in X-rays

X-ray of an elbow

AI systems can quickly scan chest X-rays to detect potential lung diseases, including pneumonia and tuberculosis (Rajpurkar et al., 2018). In addition, AI can also identify bone fractures and joint abnormalities on X-rays. A 2021 study in Nature Communications reported an AI system that could detect and localize hip fractures on X-rays with 19% higher sensitivity than radiologists (Cheng et al., 2021).

AI-powered CT scan analysis

In CT scans, AI algorithms can help identify and measure tumors, detect brain bleeds, and assess coronary artery disease (Chartrand et al., 2017). 

Radiologists can also use AI in coronary CT angiography for heart disease risk assessment. A study published in Radiology showed that an AI algorithm could predict future cardiac events with 85% accuracy using CT scans, outperforming traditional risk assessment methods (Commandeur, et al., 2020). This technology is particularly useful in emergency settings where quick, accurate diagnoses are crucial.

Improving MRI diagnosis with machine learning

Person on MRI table in red robe

Machine learning, a subset of AI, can assist in analyzing MRI scans to detect and classify brain tumors, assess multiple sclerosis progression, and even predict Alzheimer’s disease before symptoms appear (Akkus et a;., 2017).

AI is also making strides in pediatric neuroimaging. A recent study in JAMA Pediatrics demonstrated that an AI system could detect autism spectrum disorder in children with 96% accuracy using brain MRI scans, potentially enabling earlier interventions (Emerson et al., 2021).

AI in ultrasound

Ultrasound machine

In ultrasound imaging, AI can help improve image quality, automate measurements, and assist in detecting fetal abnormalities during pregnancy.

It can also assist in breast cancer screening with ultrasound. A 2020 study in The Lancet Digital Health found that an AI system could reduce false-positive results in breast ultrasound by 37%, potentially decreasing unnecessary biopsies (McKinney et al., 2020).

AI interpretation of PET scans

Kidney scan illustration

AI algorithms can analyze PET scans to detect early signs of neurodegenerative diseases like Parkinson’s and help in cancer staging and treatment monitoring.

It’s also improving the interpretation of PET scans for cardiac imaging. A study in the Journal of Nuclear Medicine reported that an AI algorithm could accurately detect and quantify myocardial perfusion defects on PET scans, potentially improving the diagnosis and management of coronary artery disease (Betancur et al., 2019).

In all these applications, AI algorithms can highlight areas of concern for radiologists to review, potentially catching issues that might be missed by the human eye.

Despite these significant advantages, AI in medical imaging isn’t without its challenges.

Navigating the Obstacles with AI in Medical Imaging

MRI machine with brain scans on the side

Despite its potential, AI in medical imaging faces several challenges.

Varying levels of accuracy in medical diagnoses

Getting access to high-quality data to train AI tools can be difficult, especially for rare conditions. Privacy concerns and limited data sharing can also make it tough to access good training data. To improve AI medical imaging diagnoses, we need new ways to create, organize, and check data. This will help AI algorithms learn about a wider range of medical conditions and make more reliable diagnoses (Srivastav et al., 2023).

A panel discussed new research showing high error rates in medical imaging for cancer clinical trials. Three studies found error rates between 25% and 50%, which were reduced to less than 2% using Yunu‘s imaging platform (Cruz et al., 2024). These errors can cause problems like delayed trials, wrong patient enrollments, data loss, and higher costs. 

Data privacy and security concerns

How can we ensure patient data used to train AI systems remains protected? (I discussed this in my articles on machine and deep learning and AI-enhanced electronic health records (EHRs).

Integration with existing healthcare systems

Implementing AI technologies into current healthcare infrastructure can be complex and costly. (I covered this more in my discussion of AI-enhanced EHR systems.)

Regulatory hurdles and approvals

AI systems must meet strict regulatory standards before using them in clinical settings. (I explore this more in-depth in my AI healthcare ethics article.)

Ethical considerations in AI-assisted diagnosis

Who is responsible if an AI system makes a mistake? How do we ensure AI doesn’t replace human judgment entirely? (I explore this more in depth in my article on AI healthcare ethics.) 

Potential for bias in AI 

Scales tipped

AI systems can inadvertently perpetuate biases present in their training data, potentially leading to disparities in care. To make AI medical imaging fair and reliable, we need to (Srivastav et al., 2023):

  1. Use diverse training data representing all types of people.
  2. Test the AI thoroughly for fairness and accuracy.
  3. Make sure the AI doesn’t discriminate against any groups.
  4. Compare the AI’s performance to accepted medical standards.
  5. Make the AI’s decision-making process clear and understandable.

Another Lancet Digital Health studied medical images of Asian, Black, and White patients. This research shows that AI systems can accurately detect a patient’s race from medical images, even when human experts can’t see any obvious racial markers. This ability persists across different imaging types and even in degraded images (Gichoya et al., 2022).

The researchers suggest using medical imaging AI cautiously, and recommend thorough audits of AI model performance based on race, sex, and age. They also advise including patients’ self-reported race in medical imaging datasets to allow for further research into this phenomenon (Gichoya et al., 2022). The study highlights the need for careful consideration of how AI models process and use racial information in medical imaging to prevent unintended discrimination in healthcare.

These steps help ensure the AI works well for everyone and that doctors can trust and use it effectively.

As we work to overcome these challenges, let’s look at what the future may hold for AI in medical imaging.

What does the future hold for AI in medical imaging? Here are some exciting trends to watch.

Advancements in deep learning and neural networks

Researchers are developing more sophisticated neural network architectures, such as transformer models, which have shown promise in medical image analysis. 

A recent study in Nature Machine Intelligence demonstrated that a transformer-based model could achieve state-of-the-art performance in multi-organ segmentation tasks across various imaging modalities Chen et al., 2021). As AI technology continues to advance, we can expect even more sophisticated algorithms capable of handling complex diagnostic tasks.

AI integration with other emerging tech

Medical imaging often involves analyzing three dimensional (3D) data to detect specific structures in the body. This is crucial for tasks like planning treatments and interventions. While 3D analysis is more complex than 2D, advances in deep learning are making it more accurate and efficient (Lungren et al., 2020).

The combination of AI with technologies like virtual reality (VR) and 3D printing are opening new possibilities surgical planning and medical education. For example, a team at Stanford University has developed an AI-powered system that combines MRI data with virtual reality to create interactive 3D models of patient anatomy, allowing surgeons to plan complex procedures more effectively (Lungren et al., 2020).

Personalized medicine and AI-driven treatment recommendations

Doctor giving patient pills

In the field of precision medicine, AI can help tailor treatment plans to individual patients based on their unique genetic makeup and medical history. A study published in Nature Medicine showed that an AI system could integrate genomic data with CT scans to predict response to immunotherapy in lung cancer patients with 85% accuracy, potentially guiding more effective treatment decisions (Xu et al., 2021).

Expansion of AI applications to new medical specialties

While radiology has been at the forefront of AI adoption, we’re likely to see AI applications expand into other medical fields like pathology.

AI is making inroads into specialties like dermatology and ophthalmology. A 2020 study in Nature Medicine reported an AI system that could diagnose 26 common skin conditions with accuracy comparable to board-certified dermatologists, using only smartphone photos (liu et al., 2020).

Expanding the scope of the images and conditions that AI can diagnose, as well as the medical specialties, requires further research and development. Currently, there’s a limitation to certain types of medical images and conditions, and expanding its capabilities requires more extensive training data and ongoing development efforts (Srivastav et al., 2023).

Collaborative AI systems working alongside human experts

The concept of “human-in-the-loop” AI is gaining traction, where AI systems and human experts work together to improve diagnostic accuracy. A study in The Lancet Digital Health found that this collaborative approach could reduce diagnostic errors by up to 85% compared to either AI or human experts working alone (Commandeur, 2020).

Conclusion

AI in medical imaging diagnosis is rapidly advancing, offering great potential to improve patient outcomes and streamline healthcare processes. As we’ve explored, AI technologies are enhancing diagnostic accuracy, efficiency, and early disease detection across various imaging modalities. As AI continues to advance, it’s clear it will play an increasingly important role in medical imaging diagnosis. 

What are your thoughts on the role of AI in medical imaging? How do you think it will change the patient experience this decade or next?

References

Adamopoulou, M., Makrynioti, D., Gklistis, G., & Koutsojannis, C. (2023). Revolutionizing eye disease diagnosis with deep learning and machine learning. World Journal of Advanced Research and Reviews, 18(01), 741-763. doi:10.30574/wjarr.2023.18.2.0856 

Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., & Erickson, B. J. (2017). Deep learning for brain MRI segmentation: state of the art and future directions. Journal of Digital Imaging, 30(4), 449-459.

Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., Tse, D., Etemadi, M., Ye, W., Corrado, G., Naidich, D. P., & Shetty, S. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25(6), 954-961. doi.org/10.1038/s41591-019-0447-x

Betancur, J., et al. (2019). Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: A multicenter study. Journal of Nuclear Medicine, 60(7), 921-927.

Bibault, J. E., et al. (2018). Personalized radiation therapy with deep learning. Nature Reviews Clinical Oncology, 15(12), 701-711.

Chen, J., et al. (2021). TransUNet: Transformers make strong encoders for medical image segmentation. Nature Machine Intelligence, 3(12), 1033-1041.

Chartrand, G., Cheng, P. M., Vorontsov, E., Drozdzal, M., Turcotte, S., Pal, C. J., … & Tang, A. (2017). Deep learning: a primer for radiologists. RadioGraphics, 37(7), 2113-2131.

Cheng, C. T., et al. (2021). Development and validation of an AI-based automated detection algorithm for major airport fractures on pelvic radiographs. Nature Communications, 12(1), 1-13.

Commandeur, F., et al. (2020). Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT. Radiology, 294(2), 434-443.

Carass, A., Roy, S., Gherman, A., Reinhold, J. C., Jesson, A., Arbel, T., Maier, O., Handels, H., Ghafoorian, M., Platel, B., Birenbaum, A., Greenspan, H., Pham, D. L., Crainiceanu, C. M., Calabresi, P. A., Prince, J. L., Roncal, W. R., Shinohara, R. T., & Oguz, I. (2020). Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis. Scientific Reports, 10(1), 1-19. doi.org/10.1038/s41598-020-64803-w 

Chen, H., Zhang, W., Zhu, X., Ye, X., & Zhao, W. (2020). Deep learning for cardiac image segmentation: A review. Frontiers in Cardiovascular Medicine, 7, 25.

Choy, G., Khalilzadeh, O., Michalski, M., Do, S., Samir, A. E., Pianykh, O. S., & Geis, J. R. (2018). Current applications and future impact of machine learning in radiology. Radiology, 288(2), 318-328.

Cruz, A., Lankhorst, B., McDaniels, H., Weihe, E., Correa, E., Nacamuli, D., Somarouthu, B., & Harris, G.J. The complete workflow solution for quantitative imaging assessment of tumor response for oncology clinical trials. Presented at AACI-CRI Conference, Chicago, IL, 2024.

Ding, Y., Sohn, J. H., Kawczynski, M. G., Trivedi, H., Harnish, R., Jenkins, N. W., … & Franc, B. L. (2019). A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology, 290(2), 456-464.

Emerson, R. W., et al. (2021). Functional neuroimaging scans show patterns specific to autism in children. JAMA Pediatrics, 175(1), e204730.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.

Gichoya, J. W., Banerjee, I., Bhimireddy, A. R., Burns, J. L., Celi, L. A., Chen, L. C., … & Lungren, M. P. (2022). AI recognition of patient race in medical imaging: a modelling study. The Lancet Digital Health, 4(6), e406-e414. 

Gong, E., et al. (2020). Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. Radiology: Artificial Intelligence, 2(3), e190185.

Huang, Y., Li, X., Yang, G., & Luo, C. (2021). A review on coronary artery disease diagnosis using deep learning and data fusion. Computers in Biology and Medicine, 134, 104427.

Kohl, S., Romera-Paredes, B., Meyer, C., De Fauw, J., Ledsam, J. R., Maier-Hein, K., … & Rezende, D. J. (2018). A probabilistic U-Net for segmentation of ambiguous images. In Advances in Neural Information Processing Systems (pp. 6965-6975).

Korolev, S., Safiullin, A., Belyaev, M., & Dodonova, Y. (2017). Residual and plain convolutional neural networks for 3D brain MRI classification. In International Workshop on Machine Learning in Medical Imaging (pp. 261-269).

Liu, Y., et al. (2020). A deep learning system for differential diagnosis of skin diseases. Nature Medicine, 26(6), 900-908.

Lungren, M. P., et al. (2020). AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in global health emergency. npj Digital Medicine, 3(1), 1-8.

McKinney, S. M., et al. (2020). International evaluation of an AI system for breast cancer screening. The Lancet Digital Health, 2(3), e138-e148.

Pinto-Coelho, L. (2023). How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering, 10(12). https://doi.org/10.3390/bioengineering10121435 

Rajpurkar, P., Irvin, J., Ball, R. L., Zhu, K., Yang, B., Mehta, H., … & Lungren, M. P. (2018). Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Medicine, 15(11), e1002686.

Rodrigues, G., Galeone, C., Reis, J., Sousa, J., & Rueff, J. (2020). Explainable artificial intelligence model for breast cancer diagnosis from mammography. Cancers, 12(11), 3199.

Srivastav, S., Chandrakar, R., Gupta, S., Babhulkar, V., Agrawal, S., Jaiswal, A., Prasad, R., & Wanjari, M. B. (2023). ChatGPT in Radiology: The Advantages and Limitations of Artificial Intelligence for Medical Imaging Diagnosis. Cureus, 15(7): e41435. doi:10.7759/cureus.41435

Tulsani, V., Sahatiya, P., Parmar, J., & Parmar, J. (2023). XAI Applications in Medical Imaging: A Survey of Methods and Challenges. International Journal on Recent Innovation Trends in Computing and Communication. 11(9), 181-186. doi:​​10.17762/ijritcc.v11i9.8332

Xu, Y., et al. (2021). Deep learning predicts lung cancer treatment response from serial medical imaging. Nature Medicine, 27(11), 1973-1981.

Xu, Z., Li, L., Cheng, K. T., Gu, L., Zhu, X., & Heng, P. A. (2018). Dual pathway network with gated fusion for pancreatic ductal adenocarcinoma segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 18-26).

Vedula, S. S., Reza, A. M., Taylor, R. H., & Ibanez, L. (2019). Explainable deep learning models in medical image analysis. Journal of Imaging, 5(4), 58.

Yala, A., et al. (2021). Toward robust mammography-based models for breast cancer risk. JAMA Network Open, 4(7), e2114134.

Yunu. (2024). The Clinical Trial Imaging Accuracy Crisis. Retrieved from https://www.yunu.io/the-clinical-trial-imaging-accuracy-crisis-aaci-cri-panel-discussion

AI-Enhanced EHR Systems: Electronic Health Records with Intelligent Technology

AI-Enhanced EHR Systems: Electronic Health Records with Intelligent Technology

AI Health Tech Med Tech

Electronic Health Records (EHRs) have become an integral part of modern healthcare. But what happens when we combine these digital records with the power of artificial intelligence (AI)? 

The result is AI-enhanced EHR systems, a game-changing technology that’s reshaping how we approach patient care, data management, and clinical decision-making. Let’s review AI-enhanced EHRs, their benefits, key features, challenges, and considerations for this exciting technology. 

Contents

What Are AI-Enhanced EHR Systems?

medical record showing on a tablet

AI-enhanced EHR systems are the next evolution of traditional electronic health records. These intelligent systems use advanced algorithms and machine learning techniques to analyze, interpret, and act on patient data in ways that were previously impossible.

But how exactly do they differ from standard EHRs? Here’s a quick comparison.

Standard EHRsAI-Enhanced EHRs
Store and organize patient dataAnalyze and interpret patient data
Require manual data entry and retrievalAutomate data entry and provide intelligent insights
Offer basic search functionality Use natural language processing (NLP) for advanced queries
Provide static informationOffer predictive analytics and personalized recommendations

AI integration transforms EHRs from passive data repositories into active, intelligent systems that can assist healthcare providers in making more informed decisions and improving patient care.

The healthcare AI market was estimated at $19.27 billion in 2023, and is projected to reach over $209 billion by 2030 (Grand View Research, 2024). The global market for electronic health records is expected to reach nearly $18 billion by 2026 (Yang, 2023).

The need to improve complex and inefficient EHR workflows and get valuable insights from historical patient data drives the demand for AI-powered EHRs (Davenport et al., 2018).

Benefits of AI in EHR Systems

periodic table showing on invisible screen with doctor pointing

The incorporation of AI into EHR systems brings a host of benefits to healthcare organizations, providers, and patients alike. Let’s look at some of the key advantages.

Improved Clinical Decision Support

AI-powered EHRs can analyze large amounts of patient data, medical literature, and clinical guidelines to provide evidence-based recommendations to healthcare providers. This can help clinicians make more accurate diagnoses and develop effective treatment plans. One study shows that AI-enhanced EHRs can provide diagnostic assistance at nearly 99% accuracy.

Enhanced Data Analytics and Insights

By leveraging machine learning algorithms, AI-enhanced EHRs use machine learning to find patterns in patient data that humans might miss. This can lead to early detection of diseases, identification of at-risk patients, and population health management improvements.

Streamlined Workflows and Reduced Administrative Burden

AI can automate many time-consuming tasks, such as data entry, coding, and billing. This allows healthcare professionals to spend more time focusing on patient care and less time on paperwork.

Better Patient Outcomes and Personalized Care

With AI’s ability to process and analyze large datasets, healthcare providers can develop more personalized treatment plans and medication planning based on a patient’s unique genetic makeup, lifestyle factors, and medical history.

Now that we’ve covered the benefits, let’s explore the specific features that make AI-enhanced EHRs so powerful.

Key Features of AI-Enhanced EHRs

Now that we’ve covered the benefits, let’s explore some of the key features that make AI-enhanced EHRs so powerful.

Natural Language Processing for Efficient Data Entry

Natural Language Processing (NLP) allows AI-enhanced EHRs to understand and interpret human language. This means clinicians can dictate notes or enter free-text information, which the system can automatically convert into structured data. This not only saves time but also improves the accuracy of patient records (Harris, 2023).

Predictive Analytics for Early Disease Detection

By analyzing patterns in patient data, AI algorithms can predict the likelihood of certain diseases or complications. This allows healthcare providers to intervene early and potentially prevent serious health issues before they occur.

However, using prediction models in healthcare settings is still challenging. A study found that most predictive models focused on blood clotting issues and sepsis. Common problems with these models include too many alerts, not enough training, and more work for healthcare teams  (Lee et al., 2020). 

Despite these challenges, most studies showed that using predictive models led to better patient outcomes. More research, especially using randomized controlled trials, is needed to make these findings more reliable and widely applicable (Lee et al., 2020).

Automated Coding and Billing

AI can automatically assign appropriate medical codes to diagnoses and procedures, reducing errors and speeding up the billing process. This not only improves efficiency but also helps ensure proper reimbursement for healthcare services.

Intelligent Scheduling and Resource Allocation

AI-enhanced EHRs can optimize appointment scheduling by considering factors such as patient needs, provider availability, and equipment requirements. This leads to better resource utilization and improved patient satisfaction.

The benefits of using AI with EHRs is clear. Now let’s discuss how healthcare organizations can implement this powerful tool in medical settings.

Implementing AI-powered EHR Systems in Healthcare

worker looking at 3 monitors on desk

Implementing AI-enhanced EHRs often requires significant changes to existing healthcare IT infrastructure and workflows, which is a complex but necessary process. However, It’s essential for ensuring seamless data flow, maintaining operational efficiency, and maximizing the benefits of AI in healthcare settings. Here are some key points to consider.

AI-powered EHR Costs

Building a custom EHR system with AI features typically costs around $400,000 to $450,000 (Madden & Bekker). The price depends on several factors, including:

  • How complex the AI functions are
  • The accuracy of the machine learning 
  • The amount of data handled
  • The number of other systems it needs to work with
  • How user-friendly and secure it is
  • Whether special approvals like FDA registration are required
  • Cloud services
  • Support and maintenance

All these elements affect the final price of creating an AI-enhanced EHR system.

AI-powered EHR Implementation Strategies

If you’re considering implementing an AI-enhanced EHR system in your healthcare organization, here are some strategies to keep in mind:

  1. Assess Organizational Readiness: Evaluate your current IT infrastructure, staff capabilities, and organizational culture to determine if you’re ready for an AI-enhanced EHR.
  1. Choose the Right Solution: Research different AI-EHR solutions and select one that aligns with your organization’s needs and goals.
  1. Develop a Phased Implementation Plan: Start with a pilot program and gradually roll out the system across your organization to minimize disruption.
  1. Focus on Training and Change Management: Invest in comprehensive training programs and change management strategies to ensure smooth adoption of the new system.

Methods of Integration with Existing Systems

nurse and doctor pointing at computer

Several methods can be employed to integrate AI-enhanced EHRs with existing healthcare IT infrastructure (Dhaduk, 2024):

  • Enterprise Service Bus (ESB): This method is ideal for integrating multiple applications and systems across the healthcare organization, enabling data exchange and orchestration of complex processes.
  • Point-to-Point Integration (P2P): Suitable for simple and straightforward integrations, such as connecting a medical device directly with an EHR system.
  • API Integration: This involves exposing and consuming APIs to enable data exchange between different systems and applications. It’s particularly useful for integrating modern, cloud-based systems.
  • Robotic Process Automation (RPA): RPA can be used to automate repetitive tasks and processes, particularly with legacy systems that have limited integration capabilities.
  • Integration Platform as a Service (IPaaS): A cloud-based solution that connects different healthcare systems quickly, without local servers.

Best Practices for Successful Integration

To ensure successful integration of AI-enhanced EHRs with existing healthcare IT infrastructure, consider the following best practices:

  1. Conduct a thorough assessment: Before integration, assess your current IT infrastructure, identifying potential compatibility issues and integration points.
  1. Develop a comprehensive integration plan: Create a detailed plan that outlines the integration process, including timelines, resources needed, and potential risks.
  1. Ensure data quality and standardization: Clean and standardize data across all systems to ensure accurate AI analysis and insights (Dhaduk, 2024).
  1. Prioritize security and privacy: Implement robust security measures to protect patient data during and after the integration process (Narayanan, 2023).
  1. Provide adequate training: Offer comprehensive training to healthcare staff on how to use the integrated AI-enhanced EHR system effectively (Narayanan, 2023).
  1. Start with a pilot program: Consider implementing the integration in phases, starting with a pilot program to identify and address any issues before full-scale deployment.
  1. Continuous monitoring and optimization: After integration, continuously monitor system performance and gather feedback from users to optimize the integrated system over time.

By carefully considering these aspects of integration, healthcare organizations can successfully implement AI-enhanced EHR systems that work harmoniously with their existing IT infrastructure, leading to improved patient care, increased operational efficiency, and better overall healthcare outcomes.

Key Concerns for AI-powered EHRs

EHR flatlay with iphone mouse keyboard

While AI-enhanced EHRs offer numerous benefits, they also come with their own set of challenges.

Data Privacy and Security Concerns

With the increased use of AI and data sharing, ensuring patient privacy and data security becomes even more critical.

Many AI technologies are developed by private companies, which means patient health information may be controlled by them. This can lead to problems if the companies don’t protect the data properly.

One big issue is that AI systems often need a lot of patient data to work well. Sometimes, this data might be moved to other countries, or used in ways patients didn’t agree to. There’s also a worry that even if data is made anonymous, new AI tools may figure out who the data belongs to (Murdoch, 2021).

To address these problems, we need strong rules about how companies can use patient data. These rules should make sure that patients have a say in how their information is used and that the data stays in the country where it came from. Companies should also use the latest methods to keep data safe and private.

Challenges of Integration with Existing Healthcare IT Systems

man doing medical coding

System Compatibility and Interoperability: One of the primary challenges is ensuring that the new AI-enhanced EHR system is compatible with existing legacy systems. Many healthcare organizations use a mix of old and new technologies, which can create compatibility issues. Achieving true interoperability between the AI-enhanced EHR and other healthcare IT systems is crucial for seamless data exchange and workflow optimization (Narayanan, 2023).

Data Standardization: Different systems often use varying data formats and standards. Integrating an AI-enhanced EHR requires standardizing data across all systems to ensure accurate analysis and interpretation (Dhaduk, 2024).

Security and Privacy Concerns: Integrating new AI systems with existing infrastructure raises questions about data security and patient privacy. Ensuring HIPAA compliance and protecting sensitive patient information is paramount (Narayanan, 2023).

Training Healthcare Professionals

Staff need to be trained not only on how to use the new systems but also on how to interpret and act on AI-generated insights. However, AI can be hard to understand, and clinicians might not trust it at first.

They’ll need to learn about data analysis and how AI makes decisions. Then they can explain AI-based decisions in a way patients can understand. Overall, medical education will need to change to include both AI skills and traditional medical knowledge (Giordano et.al., 2021).

Ethical Considerations and Bias in AI 

As AI plays a larger role in clinical decision-making, questions arise about accountability and the potential for bias in AI algorithms. This bias can come from the data used to train the models or from how the models work. For example, some datasets mostly include light-skinned people or older patients, which can lead to unfair results. It’s hard to spot these biases in complex AI models. 

Researchers are trying to make AI fairer, but some solutions might actually cause more problems for vulnerable groups. Until better solutions are found, clinicians must watch for situations where a model trained on general data might not work well for their patients (Giordana et al., 2021).

Anantomy scan with goggles stethoscope and notebook

The future of AI-enhanced EHRs is exciting, with several emerging trends on the horizon:

  • Advanced AI Algorithms for Personalized Treatment Plans: As AI technology improves, we can expect even more sophisticated algorithms that can develop highly personalized treatment plans based on a patient’s unique characteristics.
  • Blockchain Technology for Secure Health Data Exchange: Blockchain could provide a secure and transparent way to share health data across different healthcare providers and organizations.
  • AI-Powered Virtual Health Assistants: Virtual assistants powered by AI could help patients navigate their health records, schedule appointments, and even provide basic health advice.

Future EHRs should integrate telehealth technologies and home monitoring devices. These include tools like smart glucometers and even advanced wearables that measure various health metrics. The focus is on patient-centered care and self-management of diseases. Healthcare providers are likely to use a mix of vendor-produced AI capabilities and custom-developed solutions to improve patient care and make their work easier. 

While the shift to smarter EHRs is important, it’s expected to take many years to fully implement. Most healthcare networks can’t start from scratch, so they’ll need to gradually upgrade their existing systems.

It’s important to balance the benefits of AI in healthcare with protecting patient privacy. As AI keeps improving quickly, we need to make sure our laws and regulations keep up to protect people’s information.

Conclusion

It’s clear that AI-enhanced EHR systems will play an increasingly important role in healthcare delivery. By embracing this technology, healthcare organizations can improve patient care, streamline operations, and stay ahead in an ever-evolving healthcare landscape.

Are you ready to take your EHR system to the next level with AI? The future of healthcare is here, and it’s intelligent, personalized, and data-driven.

References

Davenport, T.H., Hongsermeier, T.M., & Alba Mc Cord, K. (2018). Using AI to Improve Electronic Health Records. Harvard Business Review. Retrieved from https://hbr.org/2018/12/using-ai-to-improve-electronic-health-records

Dhaduk, H. (2024). A Guide to Modernizing Legacy Systems in Healthcare. SIMFORM. Retrieved from https://www.simform.com/blog/modernizing-legacy-systems-in-healthcare/

Giordano, C., Brennan, M., Mohamed, B., Rashidi P., Modave, F., & Tighe, P. (2021). Accessing Artificial Intelligence for Clinical Decision-Making. Frontiers in Digital Health;3:645232. doi: 10.3389/fdgth.2021.645232. 

Grand View Research. (2024). AI in Healthcare Market Size & Trends. Retrieved from https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-healthcare-market 

Harris, J.E. (2023). An AI-Enhanced Electronic Health Record Could Boost Primary Care Productivity. JAMA. 2023;330(9):801–802. doi:10.1001/jama.2023.14525

Narayanan, B. (2023). Challenges and Opportunities for AI Integration in EHR Systems. iTech. Retrieved from https://itechindia.co/us/blog/challenges-and-opportunities-for-ai-integration-in-ehr-systems/

Lee, T. C., Shah, N.C., Haack, A. & Baxter, S.L.. (2020). Clinical Implementation of Predictive Models Embedded within Electronic Health Record Systems: A Systematic Review. Informatics; 7(3):25. https://doi.org/10.3390/informatics7030025 

Madden, A., & Bekker, A. (n.d.) Artificial Intelligence for EHR: Use Cases, Costs, Challenges. ScienceSoft. Retrieved from https://www.scnsoft.com/healthcare/ehr/artificial-intelligence

Murdoch, B. (2021). Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Medical Ethics 22, 122. https://doi.org/10.1186/s12910-021-00687-3

Lin, W., Chen, J.S., Chiang, M.F., & Hribar, M.R. (2020). Applications of Artificial Intelligence to Electronic Health Record Data in Ophthalmology. Translational Vision Science & Technology, 27;9(2):13. doi: 10.1167/tvst.9.2.13.

Yang, J. (2023). Market value of electronic health records & clinical workflow in Smart Hospitals, from 2018 to 2026. Statista. Retrieved from https://www.statista.com/statistics/1211885/smart-hospital-market-value-of-electronic-health-record-and-clinical-workflow-forecast/

NLP in Healthcare: Streamlining Documentation and Medical Research

NLP in Healthcare: Streamlining Documentation and Medical Research

AI Health Tech Med Tech

Natural Language Processing (NLP) is a key component in my series on AI in healthcare. By enabling machines to understand and interpret human language, NLP in healthcare is driving significant improvements in patient outcomes and healthcare efficiency. The market for NLP in healthcare shows similar growth of 18% annually (Research and Markets, 2024).

This article explores various NLP applications in healthcare.

Contents

Understanding NLP Applications in Healthcare

nurse with clipboards

NLP is a subset of Artificial Intelligence (AI) focused on the interaction between computers and human language. It involves several core components and techniques:

  • Optical Character Recognition (OCR): Changing written or printed text into digital text.
  • Tokenization: Breaking text into smaller parts like words or sentences.
  • Text Classification: Categorizing text into predefined groups.
  • Named Entity Recognition (NER): Identifying and classifying entities in text, such as names, dates, and medical terms.
  • Sentiment Analysis: Determining the emotional tone of text.
  • Topic Modeling: Discovering abstract topics within a collection of documents.

NLP’s journey in healthcare began with simple text analysis. It has evolved into a sophisticated tool for clinical documentation, patient data analysis, and medical research.

Optical Character Recognition (OCR) 

OCR recognizes text in documents and changes it to digital form for further processing. OCR can extract text in various formats, including digital images, presentations, and scans of printed or handwritten notes, logs, and other documents (Intellias, 2024).

OCR solutions can be especially useful in healthcare applications to preprocess documents generated for medical procedures, like prescriptions, doctors’ notes, test results, and CAT scans. 

When digitized, these artifacts become part of an electronic health record (EHR), which makes them more complete and easier to use.

Tokenization

NLP breaks text into smaller parts called tokens, which can be words or sentences. This process, called tokenization, helps computers understand and analyze text better. It makes it easier for NLP programs to find patterns and important information in the text (Intellias, 2024).

Text Classification 

Text classification uses NLP to sort texts into categories. It involves two steps:

  1. Turning text into numbers (embedding)
  2. Using these numbers to predict the category

Which method to use depends on factors like data size and need for interpretability. Interpretable models like linear regression and decision trees can show which parts of the text were most important for the classification. (Rijcken, et al., 2022).

Named Entity Recognition (NER)

NER finds and labels important information in text, like names, locations, dates, diagnoses, and medicine names from medical records. This helps create more useful EHRs.

In a study conducted in Colombia, researchers reviewed NER techniques from 2011 to 2022, focusing on classification models, tagging systems, and languages used. The study highlights the importance of NER and relation extraction (RE) in automatically gleaning concepts, events, and relationships from EHRs. However, there’s a lack of research on NER and RE tasks in specific clinical domains. While EHRs are crucial for clinical information gathering, creating new collections of machine-readable texts in specific clinical areas is necessary to develop NER and RE models for practical clinical use (Durango et al., 2023).

Sentiment Analysis 

Doctor shows table to senior in blue shirt

Sentiment analysis is a way to understand how people feel about something by looking at what they say or write. It uses a mix of NLP, machine learning, and statistics programs to figure out if opinions are positive, negative, or neutral. It can even detect emotions like happiness or anger.

One way to use sentiment analysis in healthcare is with patient surveys. By analyzing the responses, hospitals and clinicians can see what they’re doing well and what needs improvement. When healthcare providers make changes based on what truly matters to patients, they improve patient care quality, and stay ahead of their competitors. 

Topic Modeling

Clinicians can use a patient’s EHR to predict health outcomes, and make better decisions based on patient records. Using topic models can help make these predictions clearer, but choosing the right model is tricky. 

Machine learning has many uses in healthcare, but clinicians need a better understanding of how it works. One way to make it clearer is by using topic modeling. Topic modeling can group patient notes into topics, making it easier to see patterns. It can also help classify text and make predictions about patient health by finding common themes in patient notes. 

Many researchers have used a method called Latent Dirichlet Allocation (LDA) for topic modeling, but there are other options too. The challenge is picking the right method. It needs to be both accurate in its predictions and easy for doctors to understand. If it’s not accurate or not understandable, it’s not very useful. There’s not much research that looks at both how well these models predict and how easily they can be understood (Rijcken, et al., 2022).

With a foundational understanding of NLP components, let’s explore how these technologies impact clinical documentation.

Enhancing Clinical Documentation with NLP

overhead view of a doctor typing

NLP can process information in a patient’s EHR. This allows health systems to classify patients and summarize conditions quickly in clinical documentation, saving clinicians time when reviewing complex records and finding critical insights.

Accurate and efficient clinical documentation is crucial for patient care. NLP enhances this process in several ways:

  • Automated Data Extraction: NLP can extract relevant information from unstructured text, such as clinical notes, and convert it into structured data.
  • Reduction of Documentation Errors: By automating data entry, NLP minimizes human errors.
  • Time-Saving Benefits: Healthcare providers can save significant time, allowing them to focus more on patient care.

Speech recognition is another application of NLP. Voice recognition software can transcribe clinical notes in an EHR. The clinician can review the updated patient chart on the screen in an instant (IMO Health).

Beyond documentation, NLP’s capabilities extend to extracting valuable insights from patient data and predicting health outcomes.

NLP for Patient Data Insights and Predictive Analytics

NLP processes and analyzes large volumes of patient data, uncovering valuable insights:

  • Early Disease Detection: NLP can analyze patient records to identify early signs of diseases (predictive analytics). This extra layer of monitoring can help doctors catch and address problems early (Alldus, 2022).
  • Population Health Management: By analyzing health trends, NLP can help manage the health of populations.
  • Personalized Treatment Recommendations: NLP provides tailored treatment plans based on individual patient data.

However, with great power comes great responsibility. Privacy concerns and data security measures are paramount when dealing with sensitive patient information. Healthcare providers must ensure that NLP systems comply with data protection regulations.

We’ve seen how NLP enhances data analysis, so let’s examine its role in medical imaging and treatment planning.

Advancing Medical Imaging, Diagnosis, and Treatment Planning

MRI machine with multiple scans on the side

NLP helps in medical imaging by analyzing radiology reports and identifying specific health issues. It can also gather and label images from medical storage systems. This technology helps doctors better understand patient conditions and supports healthcare organizations as they grow and improve their services (Shafii, 2023).

NLP plays a pivotal role in supporting medical diagnosis and optimizing treatment plans:

  • Symptom and History Analysis: NLP analyzes symptoms and medical histories to support diagnostic decisions.
  • Integration with AI: Combining NLP with other AI technologies enhances diagnostic accuracy.
  • Treatment Plan Optimization: NLP analyzes treatment outcomes across large patient populations to identify the most effective treatments and potential drug interactions.

For instance, an NLP system helped a clinic improve diagnostic accuracy for rare diseases by 20%, demonstrating its potential in clinical practice.

While NLP can significantly improve patient care, its influence extends to the broader field of medical research and literature analysis.

NLP in Medical Research and Literature Analysis

Black female doctor typing

NLP is invaluable in processing and analyzing medical literature:

NLP helps healthcare organizations handle large amounts of medical information. It uses AI to read and summarize research papers, clinical trials, and case studies. This technology can find important points and patterns in medical literature, making it easier for healthcare providers to stay up-to-date and provide better care (Shafii, 2024).

By accelerating the analysis of medical literature, NLP has the potential to fast-track medical discoveries and innovations.

Ultimately, the goal of NLP in healthcare is to improve patient outcomes and satisfaction. Let’s explore how.

Improving Patient Experiences: Patient Care: NLP’s Impact on Healthcare Satisfaction 

Family checking in for appointment at the desk

Natural Language Processing (NLP) significantly enhances patient care and satisfaction in several ways (Ariwala, 2024).

Improved Patient-Provider Interactions

NLP bridges the gap between complex medical terminology and patients’ understanding. It simplifies medical jargon, making health information more accessible to patients. This improved communication leads to better patient comprehension of their health status and treatment plans.

Enhanced Electronic Health Record (EHR) Usage

NLP offers an alternative to typing or handwriting notes, reducing EHR-related stress for clinicians. This allows healthcare providers to spend more time interacting with patients and less time on documentation, improving the overall care experience.

Increased Patient Health Awareness

By translating complex medical data into more understandable language, NLP empowers patients to make informed decisions about their health. This increased understanding can lead to better patient engagement and compliance with treatment plans.

Improved Care Quality

NLP tools help healthcare organizations evaluate and improve care quality. They can measure physician performance, identify gaps in care delivery, and flag potential errors. This leads to more consistent, high-quality care across the board.

Critical Care Identification

NLP algorithms can analyze large datasets to identify patients with complex or critical care needs. This enables healthcare providers to prioritize and tailor care for high-risk patients, potentially improving outcomes and patient satisfaction.

Efficient Information Extraction

By quickly extracting and summarizing relevant information from medical records, NLP saves time for healthcare providers. This efficiency allows for more thorough patient assessments and personalized care plans.

Overall, NLP technology in healthcare results in improved patient outcomes, increased satisfaction, and a more positive healthcare experience for both patients and providers.

Despite the numerous benefits of NLP in healthcare, there are still challenges to overcome as well as exciting future directions.

The Road Ahead: Overcoming Barriers with NLP for Healthcare Providers

Doctor smiling and using Mac

Despite its benefits, NLP in healthcare faces several challenges:

  • Data Quality and Standardization: Inconsistent data quality can hinder NLP effectiveness.
  • Multilingual NLP: Developing NLP systems that can process multiple languages is crucial for global healthcare.
  • Real-Time Analysis: Real-time NLP analysis in clinical settings is still in its infancy but holds great promise.
  • Mistrust and Slow Adoption: Clinicians hesitate to use NLP for documentation due to concerns about accuracy and potential errors, despite its time-saving benefits (IMO Health).

Ethical considerations, such as ensuring unbiased algorithms and responsible AI development, are also critical. As NLP technology evolves, its integration with other AI technologies will open new possibilities for patient care.

To address concerns, look to frameworks like the Ethics Guidelines for Trustworthy AI or the Blueprint for an AI Bill of Rights. These frameworks offer design principles for trustworthy AI (Rebitzer & Rebitzer, 2023). 

In the future, NLP will likely change many areas of healthcare, from finding new medicines to helping patients recover. It might completely change how doctors and nurses do their jobs. The Global NLP in Healthcare and Life Sciences market is expected to reach $3.7 Billion by 2025 (Alldus, 2022). 

Conclusion

NLP is transforming healthcare by enhancing clinical documentation, analyzing patient data, supporting medical diagnosis, and advancing medical research. As NLP technologies continue to evolve, their impact on patient care will only grow. 

Overall, NLP technology in healthcare leads to more informed patients, more efficient providers, and a healthcare system better equipped to deliver high-quality, personalized care. 

References

Alldus. (2022). 5 Applications of NLP in Healthcare. Retrieved from https://alldus.com/blog/5-applications-of-nlp-in-healthcare/ 

Ariwala, P. (2024). Top 14 Use Cases of Natural Language Processing in Healthcare. Maruti Techlabs. Retrieved from https://marutitech.com/use-cases-of-natural-language-processing-in-healthcare/

Artera. (2021). The Importance of Sentiment Analysis In Healthcare. Retrieved from  https://artera.io/blog/sentiment-analysis-in-healthcare

Durango, M.C., Torres-Silva, E. A., & Orozco-Duque, A. (2023). Named Entity Recognition in Electronic Health Records: A Methodological Review. Healthcare Informatics Research, 29(4):286-300. doi: 10.4258/hir.2023.29.4.286

Intellias. (2024). Leveraging Natural Language Processing (NLP) in Healthcare. Retrieved from https://intellias.com/natural-language-processing-nlp-in-healthcare/

Natural Language Processing 101: A guide to NLP in clinical documentation. (n.d.) IMO Health. Retrieved from https://www.imohealth.com/ideas/article/natural-language-processing-101-a-guide-to-nlp-in-clinical-documentation

Rebitzer, J.B., & Rebitzer R.S. (2023). AI Adoption in U.S. Health Care Won’t Be Easy. Harvard Busieness Review. Retrieved from  https://hbr.org/2023/09/ai-adoption-in-u-s-health-care-wont-be-easy

Research and Markets. (2024). Natural Language Processing (NLP) in Healthcare and Life Sciences – Global Strategic Business Report. Retrieved from https://www.researchandmarkets.com/report/healthcare-natural-language-processing

Rijcken, E., Kaymak, U., Scheepers, F., Mosteiro, P., Zervanou, K. & Spruit, M. (2022). Topic Modeling for Interpretable Text Classification From EHRs. Frontiers in Big Data 5:846930. doi: 10.3389/fdata.2022.846930 

Shafii, K. (2023). Natural Language Processing in Healthcare Explained. Consensus Cloud Solutions. Retrieved from  https://www.consensus.com/blog/natural-language-processing-in-healthcare/

AI in Clinical Trials: Improving Drug Development and Patient Care

AI in Clinical Trials: Improving Drug Development and Patient Care

AI Health Tech Med Tech

The landscape of clinical trials is quickly evolving, with artificial intelligence (AI) playing an increasingly pivotal role. The number of AI-driven firms specializing in drug discovery and development has grown from 62 in 2011 (Sokolova, 2023) to 400 firms in 2022.

This shift is not just about cutting-edge technology; it’s about improving lives and bringing new treatments to patients faster than ever before. Let’s dive in and see how AI in clinical trials works in healthcare.

Contents

The Current State of AI in Clinical Trials

Clinical trials are the most robust way to show the safety and effectiveness of a treatment or clinical approach, and provide evidence to guide medical practice and health policy. Unfortunately, they have a high failure rate.

Current clinical trials are complex, labor-intensive, expensive, and may involve errors and biases (Zhang et al., 2023). They often start late in the drug development cycle. Only around 10% of drugs entering the clinical trial stage get approved by the U.S. Food and Drug Administration (FDA) [Mai et al., 2023]. 

Key areas where AI is used in clinical trials include:

  • Patient recruitment and retention
  • Trial design and protocol optimization
  • Data management and analysis
  • Safety monitoring and detection of adverse drug reactions (ADRs)
  • Drug discovery and development

According to McKinsey, AI adoption could boost up to $25 billion into clinical development within the pharmaceutical industry, with the potential to a total gain of $110 billion (Bhavik et al., 2024).

Beyond recruitment, AI is also revolutionizing how clinical trials are designed and conducted.

Improving Patient Engagement with AI 

Doctor and patient POCs

Traditional clinical trial methods often face challenges like slow patient recruitment, high dropout rates, and inefficient data analysis. AI is helping to address these issues by providing faster, more accurate, and more personalized solutions (Hutson, 2024). 

Patient Recruitment

Traditional clinical trials have an average 30% dropout rate due to inconvenience, complex protocols, and lack of support (Clinical Trials Arena, 2024). Another big hurdle in clinical trials is finding the right patients, in part due to (Atieh & Domanska, 2024):

  • Lack of eligible participants
  • Inadequate patient awareness
  • Limited locations 

AI is changing the game by:

  • Analyzing electronic health records (EHRs) to identify suitable candidates
  • Using predictive analytics to improve patient retention rates
  • Creating personalized communication strategies to keep patients engaged

For example, AI algorithms can sift through huge amounts of patient data to find those who meet specific trial criteria. Clinical trial matching systems or services use natural language processing (NLP) tools that learn clinical trial protocols and patient data. This process makes recruitment faster, and helps ensure a more diverse and representative patient population (Zhang et al., 2023).

Patient Retention

The majority of clinical trials have participants who drop out. AI can improve retention by (Mai et al., 2023):

  • Identifying factors associated with a high risk of dropping out
  • Predicting the probability that a participant will drop out

AI-powered chatbots are also playing a crucial role in maintaining continuous communication with trial participants by:

  • Providing support 
  • Sending reminders (via AI-assisted apps) [Clinical Trials Arena, 2024]
  • Tracking progress
  • Responding to various events and milestones during the trial 

This personalized engagement can help foster a positive patient experience and build trust, which is crucial for patient retention (Jackson, 2024).

Enhanced Trial Design with Digital Health Technologies (DHTs)

Two researchers looking at a Mac

Decentralized clinical trials (DCTs) can incorporate DHTs to streamline trial design, and expand where to conduct them. 

DHTs aren’t just wearable trackers. It’s possible to implant, swallow, or insert many DHTs into the body. Placing DHTs in a particular setting with real-time data capture from trial participants in their homes and other locations makes it more convenient for them. It also gives clinicians insights on patient health status and healthcare delivery (U.S. Food & Drug Administration, 2024).

As trial designs become more sophisticated, AI can simplify managing and analyzing the resulting data.

AI can make clinical trials more efficient and effective:

  • AI-assisted trial design helps researchers create more robust study protocols
  • Adaptive trial designs use real-time data analysis to make adjustments on the fly
  • Machine learning optimizes inclusion and exclusion criteria for diverse patient selection

These AI-powered approaches can lead to faster, more cost-effective trials with higher success rates.

Data Management and Analysis in Clinical Trials with AI

Group of 4 researchers in a meeting

With decentralized clinical trials, teams must collect data from different sources including (Informatica):

  • Various types of EHRs
  • Data from providers and medical facilities
  • Wireless medical devices that may exist in professional settings or patients’ homes.

In the age of big data, AI is an invaluable tool for managing and analyzing the vast amounts of information generated during clinical trials:

  • AI systems can process and integrate data from multiple sources
  • Real-time data monitoring ensures quality control throughout the trial
  • AI-driven insights enable faster decision-making for researchers and clinicians

By harnessing the power of AI, researchers can uncover patterns and insights that might otherwise go unnoticed. For instance, AI can extract data from unstructured reports, annotate images or lab results, add missing data points, and identify subgroups among a population that responds uniquely to a treatment (Clinical Trials Arena, 2024).

Improving Safety Monitoring and Adverse Event Detection

Monitor attached to back of a woman's left shoulder

Patient safety is paramount in clinical trials. AI is enhancing pharmacovigilance (drug safety) efforts by:

  • Using algorithms for early detection of adverse events
  • Creating predictive models to assess patient safety risks
  • Automating safety signal detection and analysis

These AI-powered tools can help researchers identify potential safety issues faster and more accurately than traditional methods.

While efficient data management is crucial, ensuring patient safety remains paramount in clinical trials.

Accelerating Drug Discovery and Development

Researcher looking at microcope with several vials in foreground

The typical amount of time to launch a new drug is 10 to 12 years. The clinical trial stage itself averages five to seven years (Shah-Neville, 2024).

The estimated cost of launching a new drug is roughly $2.6 billion. Delays in time to market make drug development expensive.

AI isn’t just changing how we conduct clinical trials – it’s also speeding up the entire drug development process:

  • AI assists in target identification and validation for new drugs
  • Machine learning predicts drug efficacy and toxicity
  • AI-powered simulations reduce time and costs in the development pipeline

By leveraging AI, pharmaceutical companies can bring new treatments to patients faster and more efficiently.

As we embrace AI’s potential, we must also address the ethical and regulatory challenges it presents.

Ethical Considerations and Regulatory Challenges

Doctor and patient hands on desk 2

As with any new technology, AI can return inaccurate data or misinterpret nuances in informed consent documents or clinical trial protocols, emphasizing the need for human review (Nonnemacher, 2024).

The use of AI in clinical trials also raises important ethical and regulatory questions:

  • How do we ensure data privacy and security in AI-driven trials?
  • What steps can we take to address bias in AI algorithms and datasets?
  • How should regulatory frameworks evolve to accommodate AI integration in clinical research?

These are complex issues that require ongoing dialogue between researchers, ethicists, regulators, and patients as described in other AI health articles I’ve covered.

As AI technology continues to advance, we can expect to see even more innovative applications in clinical research. 

The Future of AI in Clinical Trials

Group of researchers in a clinical trial

What does the future hold for AI in clinical trials? Some exciting possibilities include:

  • Virtual clinical trials that reduce the need for in-person visits
  • AI systems that collaborate with human researchers to design better studies
  • Precision medicine approaches tailored to individual patients based on AI analysis

Industry experts predict continued growth in AI adoption, with a focus on identifying the most beneficial areas for AI implementation in clinical trials (Studna, 2024).

Conclusion

AI is proving to be an invaluable tool in the clinical research toolkit, offering new ways to streamline processes, improve patient experiences, and accelerate drug development. 

But AI is not a magic solution; it’s a powerful assistant that works best when combined with human expertise and ethical considerations. 

The synergy between AI and clinical trials holds immense promise for advancing medical research, developing more effective treatments, and ultimately, improving patient outcomes. The journey of AI in clinical trials is just beginning, and the potential for positive impact on global health is boundless. 

What do you think about the role of AI in clinical trials? Are you optimistic about its potential to improve patient care?

References

Atieh, D. & Domanska, O. (2024). Finding the right patients for the right treatment with AI. Avenga. Retrieved from https://www.avenga.com/magazine/how-ai-advances-patient-recruitment-in-clinical-trials

Bhavik Shah, B., Bleys, J., Viswa, C.A., Zurkiya, D., & Eoin Leydon, E. (2024). Generative AI in the pharmaceutical industry: Moving from hype to reality. McKinsey. Retrieved from https://www.mckinsey.com/industries/life-sciences/our-insights/generative-ai-in-the-pharmaceutical-industry-moving-from-hype-to-reality

How AI data management can transform your clinical trial. Clinical Trials Arena. 

Retrieved from https://www.clinicaltrialsarena.com/sponsored/how-ai-data-management-can-transform-your-clinical-trial/

Hutson, M. (2024). How AI in being used to accelerate clinical trials. Nature; 627(S2-S5). doi.org/10.1038/d41586-024-00753-x

Informatica. (n.d.) Using AI and Data Management to De-Risk Decentralized Clinical Trials. Retrieved from https://www.informatica.com/resources/articles/ai-data-management-decentralized-clinical-trials.html

Jackson, R. (2024). 3 Areas Where AI Could Revolutionize Patient Recruitment and Retention. Clinical Leader. Retrieved from  https://www.clinicalleader.com/doc/areas-where-ai-could-revolutionize-patient-recruitment-and-retention-0001

Mai, B., Roman, R., & Suarez, A. (2023). Forward Thinking for the Integration of AI into Clinical Trials. Clinical Researcher; 37(3). Retrieved from  https://acrpnet.org/2023/06/forward-thinking-for-the-integration-of-ai-into-clinical-trials

Nonnemacher, H. (2024). Two years of AI learning: Streamlining clinical trials today for future advancements. Suvoda. Retrieved from https://www.suvoda.com/insights/blog/two-years-of-ai-learning

President’s Cancer Panel. (2018). Part 1: The Rising Cost of Cancer Drugs: Impact on Patients and Society. Retrieved from https://prescancerpanel.cancer.gov/report/drugvalue/Part1.html

Sha-Neville, W. (2024). How AI is shaping clinical research and trials. Labiotech. Retrieved from  https://www.labiotech.eu/in-depth/ai-clinical-research

Sokolova, S. (2023). 12 Notable AI-powered Biotech Companies Founded in 2021. BioPharmaTrend. Retrieved from https://www.biopharmatrend.com/post/500-10-notable-ai-powered-biotech-companies-founded-in-2021

Studna, A. (2024). Future Use of Artificial Intelligence in Clinical Trials. Applied Clinical Trials. 

Retrieved from https://www.appliedclinicaltrialsonline.com/view/future-artificial-intelligence-clinical-trials

U.S. Food & Drug Administration. (2024). The Role of Artificial Intelligence in Clinical Trial Design and Research with Dr. ElZarrad. Retrieved from

https://www.fda.gov/drugs/news-events-human-drugs/role-artificial-intelligence-clinical-trial-design-and-research-dr-elzarrad

Zhang, B., Zhang, L., Chen, Q., Jin, Z., Liu, S., & Zhang, S. (2023). Harnessing artificial intelligence to improve clinical trial design. Communications Medicine, 3(1), 1-3. doi.org/10.1038/s43856-023-00425-3 

How AI in Genomics is Improving Personalized Healthcare 

How AI in Genomics is Improving Personalized Healthcare 

AI Health Tech Med Tech

The convergence of artificial intelligence and genomics is a powerful combination in healthcare. AI genomics is decoding the complexities of our DNA, giving us never-before-seen insights into human health and disease.

From personalized treatments to individual genetic profiles to predicted disease risk with remarkable accuracy, AI genomics is poised to transform patient care. In this article, we’ll explore groundbreaking AI genomics applications in healthcare, and their potential to reshape the healthcare landscape.

Contents

Understanding AI Genomics

Before we get into the fusion of AI with genetic science in healthcare, let’s start with a little background.

genetic markers

What is AI Genomics?

The concept of “genome” refers to the whole set of DNA sequences in a cell or organism.

Genomics is a term that describes the nascent discipline of sequencing, mapping, annotating and analyzing genomes (Caudai et al., 2021).

AI genomics is the integration of AI technologies with genomic data to enhance healthcare outcomes (Pearson, 2023). 

Key Technologies Driving AI Genomics Advancements

Several technologies are pivotal in advancing AI genomics:

  • Machine Learning (ML): Algorithms that learn from data to make predictions or decisions without being explicitly programmed.
  • Deep Learning (DL): A subset of ML that uses neural networks with many layers to analyze complex data patterns.
  • Next-Generation Sequencing (NGS): High-throughput sequencing technologies that generate large volumes of genomic data.
  • Bioinformatics: The use of computing tools to manage and analyze biological data (Lin & Ngiam, 2023).

The Intersection of ML, Big Data, and Genetic Research

The convergence of ML, big data, and genetic research is transforming genomics. ML algorithms can process and interpret large sets of genomic data, finding patterns and correlations impossible for humans to discern (Parekh et al., 2023).

Researchers and clinicians use these technologies to analyze large amounts of genomic data more efficiently. This integration facilitates precision medicine, making healthcare more precise and tailored to individual needs (MarketsandMarkets).

​​Now that we understand the foundation of AI genomics, let’s explore its practical applications in precision medicine.

Precision Medicine and Treatment 

Female doctor showing her elderly female patient a tablet

Tailoring Drug Therapies Based on Genetic Profiles

Precision medicine, also known as personalized medicine, aims to customize healthcare with medical decisions tailored to individual genetic profiles. AI-powered genomic analysis helps identify genetic variations that influence drug metabolism and efficacy. This allows clinicians to prescribe effective medications that have fewer side effects for each patient.

Predicting Patient Response to Treatments

AI can predict how patients will respond to specific treatments by analyzing their genetic data. For instance, ML models can identify genetic markers associated with positive or adverse reactions to particular drugs, giving us more informed treatment choices (Dinstag et al., 2023).

Minimizing Adverse Drug Reactions Through Genetic Analysis

Adverse drug reactions (ADRs) are a significant concern in healthcare. By analyzing genetic data, AI can identify patients at risk of ADRs, allowing for adjustments in medication type or dosage. This proactive approach improves the efficiency of patient safety and treatment (Abdallah, et al., 2023).

Early Disease Detection, Risk Assessment, and Management

​​While personalized treatment is crucial, AI genomics also plays a vital role in identifying health risks before they manifest.

AI Accelerates the Diagnostic Process for Diseases and Rare Genetic Disorders

It’s difficult to detect and diagnose rare genetic disorders, because they are uncommon and manifest in the body in various ways. AI can streamline this process by analyzing biomarkers 

that indicate the presence or risk of diseases such as cancer, diabetes, and cardiovascular conditions (Murphy, 2024), significantly reducing the time for diagnosis (National Gaucher Foundation, 2023).

Facilitating Gene Therapy Development and Implementation

Gene therapy offers potential cures for many genetic disorders. AI accelerates the development and implementation of gene therapies by identifying target genes and predicting therapeutic outcomes, enhancing the success rate of these treatments (MarketsandMarkets).

Assessment of Individual Risk Factors for Complex Conditions

Predictive healthcare is like a crystal ball using AI in genomics. AI-driven tools can assess individual risk factors for complex diseases by integrating genetic, environmental, and lifestyle factors. This comprehensive risk assessment helps in early detection and preventive care strategies (Chiu, 2024).

Improving Treatment Plans for Patients with Rare Conditions

AI helps develop tailored treatment plans for rare diseases by analyzing genetic and clinical data. This personalized approach ensures each patient gets the most effective therapies based on their unique genetic profile. 

Preventive Care Strategies Through AI-Driven Insights

Preventive care is crucial for managing chronic diseases. AI provides insights that promote personalized preventive strategies like lifestyle modifications and early interventions, reducing the likelihood of disease development (Bhandari et al., 2022).

Cancer Genomics and Precision Oncology

In the realm of oncology, AI genomics is making significant strides in personalizing cancer care.

genetic markers

Analyzing Tumor Genomes to Guide Targeted Therapies

AI plays a critical role in precision oncology by analyzing tumor genomes to identify mutations and genetic alterations. This information guides the selection of targeted therapies that are more likely to be effective for individual patients (Caudai et al., 2021).

Predicting Cancer Progression and Treatment Outcomes

AI models can predict cancer progression and treatment outcomes. These predictions help oncologists tailor treatment plans and monitor patient responses more effectively.

Developing Personalized Immunotherapy Approaches

Immunotherapy has revolutionized cancer treatment, but its effectiveness varies among patients. AI can identify biomarkers that predict response to immunotherapy, which helps the development of personalized treatment plans (Dinstag et al., 2023).

Pharmacogenomics and Drug Discovery

Pharmacogenomics is the study of how our genes affect our response to medications. Beyond cancer, AI genomics is reshaping the landscape of drug discovery and how new medicines are developed.

Closeup of gloved hands on a microscope

Streamlining the Drug Discovery Process Using AI

AI can find potential drug targets to enhance drug discovery. ML models can predict the efficacy and safety of new compounds, reducing the time and cost associated with traditional drug development.

Identifying New Drug Targets Through Genomic Analysis

Genomic analysis reveals new drug targets by identifying genes and pathways involved in disease processes. AI enhances this process by quickly finding novel targets for therapeutic intervention.

Repurposing Existing Drugs Based on Genetic Insights

AI can identify new uses for existing drugs by analyzing genetic data and uncovering previously unknown mechanisms of action. This approach, known as drug repurposing, can expedite the availability of effective treatments for various conditions.

Balancing Progress and Ethics in Genomic AI

The potential of AI genomics is remarkable, but we must also address the challenges and ethical considerations it presents.

7 researchers in a group

Data Privacy and Security Concerns in Genomic Medicine

The use of genomic data raises significant privacy and security concerns. Ensuring that patient data is protected from unauthorized access and misuse is crucial. Robust data encryption, secure storage solutions, and stringent access controls are essential to safeguarding genomic information.

Addressing Bias and Ensuring Equitable Access to AI Genomic Technologies

AI models can inadvertently perpetuate biases present in the training data, leading to disparities in healthcare outcomes. It is vital to develop and validate AI models using diverse datasets to ensure they are equitable and applicable to all populations.

Regulatory Frameworks for AI-Driven Healthcare Solutions

The integration of AI in healthcare requires robust regulatory frameworks to ensure safety, effectiveness, and ethical use. Regulatory bodies must establish guidelines for the development, validation, and deployment of AI-driven healthcare solutions.

Future Prospects of AI Genomics in Healthcare

Despite the challenges we discussed in the previous section, the future of AI genomics in healthcare is limitless.

genetic markers

The field of AI genomics is rapidly evolving, with emerging trends such as multi-omics integration, real-time genomic analysis, and AI-driven gene editing. These advancements hold the promise of further enhancing personalized healthcare.

Potential Impact on Global Health Outcomes

AI genomics has the potential to significantly improve global health outcomes by enabling early disease detection, personalized treatments, and effective preventive care. The widespread adoption of AI-driven genomic technologies could reduce healthcare disparities and improve quality of life worldwide.

Integration of AI Genomics into Routine Clinical Practice

For AI genomics to realize its full potential, it must be seamlessly integrated into routine clinical practice. This requires collaboration between researchers, clinicians, and policymakers to develop user-friendly tools, establish best practices, and ensure that healthcare professionals are adequately trained.

The integration of AI genomics into clinical practice is transforming personalized healthcare by enabling precise disease prediction, diagnosis, tailored treatments, and effective preventive strategies. 

However, it also presents challenges that must be carefully addressed to ensure equitable access and ethical use of these technologies. As researchers, healthcare providers, and policymakers collaborate to navigate this exciting frontier, the future of healthcare looks increasingly data-driven, personalized, and precise. By understanding and leveraging these advancements, we can move towards a more personalized and effective healthcare system.

References

Abdallah, S. et al. (2023). The Impact of Artificial Intelligence on Optimizing Diagnosis and Treatment Plans for Rare Genetic Disorders. Cureus 15(10) e46860. doi:10.7759/cureus.46860

Bhandari, M., Devereson, A. Change, A., Devenys, T., Loche, A. & Van der Veken, L. (2022). How AI can accelerate R&D for cell and gene therapies. McKinsey & Company. 

Caudai, C., Galizia, A., Geraci, F., Le Pera, L., Morea, V. Salerno, E. Via, A. & Colombo, T. (2021). AI applications in functional genomics. Computational and Structural Biotechnology Journal, 19:5762-5790. doi:10.1016/j.csbj.2021.10.009

Chiu, M. (2024). Using AI to improve diagnosis of rare genetic disorders. Baylor College of Medicine.

Dinstag, G. et al. (2023). Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. Med (New York, N.Y.) 4(1): 15-30.e8. doi:10.1016/j.medj.2022.11.001

Lin, J. & Ngiam, K.Y. (2023). How data science and AI-based technologies impact genomics. Singapore Medical Journal, 64(1), 59-66. Retrieved from https://journals.lww.com/smj/fulltext/2023/01000/how_data_science_and_ai_based_technologies_impact.10.aspx

MarketsandMarkets. (n.d.). AI in Genomics Market Industry Share: Insights, Dynamics, and Current Trends. Retrieved from https://www.marketsandmarkets.com/ResearchInsight/artificial-intelligence-in-genomics-industry.asp

Murphy, S. (2024). Advancing rare disease breakthroughs with genomics, AI, and innovation. Mayo Clinic News Network. 

National Gaucher Foundation. (2023). Using Artificial Intelligence to Diagnose Rare Genetic Diseases

National Human Genome Research Institute. (n.d.). Personalized Medicine

Parekh, A. E., Shaikh, O.A., Simran, Manan S. & Hasibuzzaman, M.A. (2023) Artificial intelligence (AI) in personalized medicine: AI-generated personalized therapy regimens based on genetic and medical history: short communication. Annals of medicine and surgery 85(11):5831-5833. doi:10.1097/MS9.0000000000001320

Pearson, D. (2023). Sparks fly as genomic medicine gets better acquainted with AI. AI in Healthcare

Personalized Healthcare: The Role of AI in Precision Medicine

Personalized Healthcare: The Role of AI in Precision Medicine

AI Med Tech

Have you ever wondered how your unique genetic makeup, lifestyle, and environment influence your healthcare? 

Welcome to the world of AI in personalized medicine, also known as precision medicine, where AI is playing a pivotal role in tailoring treatments to individual patients. In this article, we’ll explore how AI is changing the way we approach individual patient care, from diagnosis to treatment and beyond.

Contents

What is Precision Medicine?

Precision medicine aims to provide tailored healthcare solutions based on an individual’s genetic, environmental, and lifestyle factors. 

Understanding AI in Precision Medicine

3 researchers in a lab smiling

AI enhances personalized healthcare approaches by analyzing vast amounts of data to identify patterns and make predictions. It’s like having a super-smart assistant that can process information much faster and more accurately than humans. 

Subsets of AI driving changes in healthcare

The key technologies driving AI in healthcare include:

  • Machine learning: Algorithms that learn from data and improve over time
  • Deep learning: A subset of machine learning that uses neural networks to mimic human brain function
  • Natural language processing: The ability of computers to understand and interpret human language

These technologies work together to process complex medical data, leading to more accurate diagnoses and personalized treatment plans.

AI-Powered Diagnostics and Disease Prediction

One of the most exciting applications of AI in precision medicine is its ability to improve diagnostics and predict diseases. Here’s how.

Early detection of diseases

AI algorithms can analyze patient data to find subtle signs of diseases before they become apparent to human doctors. For example, researchers have developed AI models that can detect early signs of Alzheimer’s disease up to six years before a clinical diagnosis (Grassi et al., 2018).

Medical imaging analysis

MRI machine with brain scans on the side

AI is particularly adept at analyzing medical images like X-rays, MRIs, and CT scans. In some cases, AI algorithms have shown higher accuracy than human radiologists in detecting certain conditions. A study published in Nature found that an AI system outperformed human experts in breast cancer detection, reducing both false positives and false negatives (McKinney et al., 2020).

Predictive models for disease risk assessment

By analyzing a patient’s genetic data, lifestyle factors, and medical history, AI can create predictive models to assess an individual’s risk for various diseases. This allows healthcare providers to implement preventive measures and early interventions.

Tailoring Treatment Plans with AI

AI isn’t just helping with diagnostics; it’s also revolutionizing how we approach treatment. 

AI-assisted drug discovery and development

AI is accelerating the drug discovery process by:

  • Analyzing molecular structures to predict potential drug candidates
  • Simulating drug interactions to identify potential side effects
  • Optimizing clinical trial designs for faster and more efficient testing

Personalized treatment recommendations

Female doctor showing her elderly female patient a tablet

AI algorithms can analyze a patient’s unique characteristics to recommend the most effective treatment options. This includes considering factors like:

  • Genetic profile
  • Medical history
  • Lifestyle factors
  • Environmental influences

Optimizing dosages and reducing adverse drug reactions

AI can help determine the optimal drug dosage for each patient, considering factors like age, weight, kidney function, and potential drug interactions. This personalized approach can significantly reduce the risk of adverse drug reactions.

Genomics and AI: A Powerful Combination

The integration of AI and genomics is opening up new frontiers in personalized medicine. Here’s how.

AI in genomic sequencing and analysis

AI algorithms can quickly analyze large amounts of genomic data, finding patterns and variations that might be missed by human researchers. This accelerates our understanding of genetic factors in disease development and treatment response.

Identifying genetic markers for personalized treatment

genetic markers

By analyzing genetic data, AI can identify specific markers associated with disease risk or treatment response. This information helps healthcare providers customize treatments to a patient’s genetic profile.

Predicting drug responses based on genetic profiles

AI models can predict how a patient might respond to specific medications based on their genetic makeup. This approach, known as pharmacogenomics, helps doctors choose the most effective drugs with the least potential for side effects.

AI in Patient Monitoring and Care Management

AI is also changing how we monitor and manage patient health.

glucose monitor on arm with phone app showing glucose level

Real-time health monitoring using wearable devices and AI

Wearable devices combined with AI algorithms can continuously monitor vital signs and alert healthcare providers to potential issues. For example, AI-powered smartwatches can detect irregular heart rhythms and notify users of potential heart problems (Perez et al., 2019).

Personalized lifestyle and wellness recommendations

AI can analyze data from wearables, along with other patient information, to provide personalized recommendations for diet, exercise, and other lifestyle factors that impact health.

AI virtual health assistants and chatbots

Virtual health assistants and chatbots can provide 24/7 support to patients, answering questions, reminding them to take medications, and even conducting initial symptom assessments.

Challenges and Ethical Considerations

While AI in precision medicine offers tremendous potential, it also presents several challenges

Equitable access to precision medicine

There’s a risk that AI-driven precision medicine can make healthcare disparities worse if it’s not accessible to all populations. Accessible healthcare should be a priority in health systems to ensure these technologies are available to everyone, regardless of socioeconomic status.

For example, a Google Health project tested an AI system for diabetic retinopathy screening in Thailand (Johnson et al., 2021). Despite high accuracy in lab tests, the system faced challenges in actual clinics, such as poor image quality, slow internet, and patient travel issues. This shows the importance of testing AI in real clinical environments and improving systems based on user feedback. However, getting this feedback in healthcare can be time-consuming and expensive. Researchers are exploring alternatives like creating fake data or using simulations to develop better AI systems for healthcare.

Bias in AI algorithms

AI algorithms can inadvertently perpetuate biases present in training data. It’s crucial to develop diverse datasets and implement checks to ensure AI systems provide fair and equitable recommendations across all patient populations.

Data privacy and security concerns

As AI relies on vast amounts of personal health data, ensuring the privacy and security of this information is paramount. Healthcare providers and technology companies must implement robust safeguards to protect patient data.

As AI continues to advance, expect to see more exciting changes we can personalize healthcare.

  • Integration of multi-omics data (genomics, proteomics, metabolomics) for more comprehensive patient profiles
  • Advanced natural language processing for better interpretation of medical literature and clinical notes
  • Quantum computing applications in drug discovery and genomic analysis

Integration of AI in medical education and practice

Hands turning a page in anatomy book

As AI becomes more prevalent in healthcare, medical education will need to evolve to ensure healthcare professionals are equipped to work with AI systems effectively. Healthcare professionals, technologists, and policymakers must collaborate to harness the full potential of AI in precision medicine, ensuring that AI advancements benefit all patients.

Potential impact on healthcare systems and patient outcomes

AI has the potential to:

  • Improve diagnostic accuracy and speed
  • Reduce healthcare costs through more efficient resource allocation of clinical staff
  • Enhance patient outcomes through personalized treatment plans

AI is reshaping precision medicine by providing data-driven insights and tailored treatment plans. While challenges remain, the potential benefits for patient outcomes are limitless. From more accurate diagnostics to custom treatment plans, AI is empowering healthcare providers to deliver truly individualized care that can dramatically improve our quality of life. 

As we continue to refine and expand the ways we use AI in healthcare, we move closer to a future where truly personalized medicine is the norm rather than the exception.

References

Grassi, M., Loewenstein, D. A., Caldirola, D., Schruers, K., Duara, R., & Perna, G. (2018). A clinically-translatable machine learning algorithm for the prediction of Alzheimer’s disease conversion: further evidence of its accuracy via a transfer learning approach. International Psychogeriatrics, 30(11), 1755-1763.

Johnson K.B., Wei W.Q., Weeraratne D., Frisse M.E., Misulis K., Rhee K., Zhao J., & Snowdon J.L. (2021). Precision Medicine, AI, and the Future of Personalized Health Care. Clinical and Translational Sciences; 14(1):86-93. doi: 10.1111/cts.12884

McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., … & Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89-94.

Perez, M. V., Mahaffey, K. W., Hedlin, H., Rumsfeld, J. S., Garcia, A., Ferris, T., … & Turakhia, M. P. (2019). Large-scale assessment of a smartwatch to identify atrial fibrillation. New England Journal of Medicine, 381(20), 1909-1917.

Streamlined Medical Practice with Ambient Clinical Intelligence

Streamlined Medical Practice with Ambient Clinical Intelligence

AI Health Tech Med Tech

Since the onset of the pandemic, more healthcare workers and clinicians have experienced burnout, leading to dissatisfaction among both patients and clinicians. Overworked clinicians often make errors in their documentation, and their lack of time and stressed demeanor can erode the trust between physicians and patients. Dissatisfied and neglected patients are less likely to engage with their care, adhere to care plans, and follow preventive healthcare advice, increasing the likelihood of adverse outcomes (DeepScribe, 2023).

In Medscape’s 2021 physician survey, 42% of physicians reported feeling burned out, citing “too many bureaucratic tasks” and “spending too many hours at work” as the main causes. Providers often spend hours documenting patient care, and the administrative burden often stretches into their own time. The Association of American Medical Colleges projects a shortfall of nearly 122,000 physicians in the US by 2032 (Harper, 2022).

Ambient Clinical Intelligence (ACI) is a technology that can help alleviate the burden of medical documentation for clinicians, among many other benefits we’ll explore in this article. But first, let’s get a better understanding of ACI.

Contents

What is Ambient Clinical Intelligence?

Robot sitting in a patient room

ACI brings together several technologies that work together to improve healthcare:

  • Ambient intelligence
  • Artificial intelligence (AI)
  • Data analytics
  • Internet of Things (IoT)
  • Natural Language Processing (NLP)

ACI in healthcare includes IoT-based tools such as temperature and humidity sensors, blood pressure monitors, and other devices that autonomously collect data and continuously update doctors on the vital statistics of critical patients (Joshi, 2022).

“Imagine a hospital where every room, every corridor, every piece of equipment is interconnected, constantly gathering data, analyzing it, and providing insights,” says Jon Morgan, CEO and Editor-in-Chief of VentureSmarter. “It means doctors and nurses have access to a wealth of information right at their fingertips, allowing for quicker and more accurate diagnoses. This can significantly improve patient outcomes because decisions are based on a comprehensive analysis of real-time data rather than just a snapshot in time.” 

Let’s explore how ACI can make healthcare tasks more efficient in both healthcare settings and patients’ homes. 

infographic with statistics on different ACI use cases and RPM

ACI Use Cases for Clinical Spaces

ACI can improve the quality of health services by making many processes more efficient, such as:

  • Transcribing medical notes
  • Creating reports
  • Patient monitoring

This section describes some of ACI’s biggest benefits in healthcare settings.

Clinical documentation during patient care

Doctors looking at paperwork together

ACI technology can help alleviate the burden of medical documentation for clinicians, allowing them to give their full attention to patients during visits while ACI creates accurate clinical notes directly in the electronic health record (EHR) for review (Augnito, 2023). (This a concept included in the fancier term, “AI-powered medical documentation automation.”) ACI can also spot indicators of depression, anxiety, and social determinants of health (SDoH) during patient-physician conversations (Harper, 2022).

In one study, a deep learning (DL) model trained on 14,000 hours of outpatient audio from 90,000 conversations between patients and physicians. The transcription accuracy of the DL version was 80%, compared to 76% accuracy by medical scribes (Haque et al., 2020). 

In another example, a medical provider found that microphones attached to eyeglasses reduced documentation time from 2 hours to just 15 minutes. This huge time savings doubled the time spent with patients (Haque et al., 2020).

By automating routine tasks and documentation, ACI allows healthcare providers to spend more time focusing on direct patient care, leading to patient satisfaction.

Patient satisfaction

A nurse speaking to patient

The automation of ACI can help strengthen the patient-physician relationship and increase patient satisfaction, engagement, and retention. 

“Using systems that can automatically monitor patients’ vital signs, track medication administration, and even predict potential complications,” Morgan says.  “Healthcare professionals can focus more on direct patient care rather than spending time on administrative tasks. This improves the overall quality of care while also reducing the burden on healthcare workers in today’s overstretched healthcare systems.”

Tests and reports

With ACI tools, hospitals can conduct tests on patients and monitor them autonomously with wireless sensors and wearable devices

For example, an ambient intelligence sensor monitors a patient’s health by dynamically tracking their vitals. First, it collects and assesses vitals, body fat, blood sugar, cholesterol levels, and other details. Then it can create a report listing potential illnesses and recommendations on diagnoses, medical coding, diet, medications, and lifestyle (Joshi, 2022).

By enhancing data interoperability, ACI eliminates the need for redundant paperwork and testing. ACI can streamline care coordination by compiling data from various sources into consolidated dashboards, providing clinicians with a holistic view of each patient. Reviewing these dashboards can help them better understand their patients’ clinical history, medications, test results, and more (Augnito, 2023). 

Tracking infectious disease

IoT, thermal vision cameras, and AI can check infected zones, such as surfaces where infectious viruses are found, and ensure they are cleaned and decontaminated. Thermal vision cameras are also useful for monitoring crowded areas and tracking individuals who may carry a contagious disease (Joshi, 2022).

Surgical training

In the operating room (OR), ambient cameras can be used for endoscopic videos to improve surgical training. Ambient intelligence can also account for surgical objects in the OR, including those that could be left inside a patient during a procedure, to mitigate staff errors (Haque et al., 2020).

Continuous patient monitoring in the ICU

In one study, ambient sensors in hospital intensive care units (ICUs) monitored the movements of patients, clinicians, and visitors with over 85% accuracy.

In another study, sensors installed above hand sanitizer dispensers across a hospital unit were 75% accurate in measuring handwashing compliance within one hour, while a human observer was only 63% accurate (Haque et al., 2020).

Patient in ICU with monitor in foreground

Observing patients post-surgery

Ambient intelligence in recovery rooms post-op can continuously observe recovery-related behaviors, giving providers insight into movement and other activities. This can reduce recovery time and improve post-surgical outcomes (Joshi, 2022).

While ACI offers numerous benefits in clinical spaces, its potential extends beyond hospital walls.

ACI for Aging in Place: Enhancing Independent Living

By 2050, the world’s population aged 65 years or older will increase from 700 million to 1.5 billion (Haque et al., 2020). As people live longer, their independent living, chronic disease management, physical rehabilitation, and mental health become paramount. 

Promoting autonomy for patients with remote patient monitoring (RPM)

Activities of daily living (ADLs), such as bathing, dressing, and eating, are critical to the well-being and independence of aging adults. Aging and elderly patients living at home are at an increased risk for falls, accidents, and emergencies. Impairment in performing ADLs is associated with a twofold increased risk of falling, and up to a fivefold increase in the one-year mortality rate (Haque et al., 2020).

RPM through ACI can analyze their daily activities to detect significant changes that may need a closer look. It can also help identify changes in vital signs, movement patterns, sleep rhythms, behaviors, and emerging symptoms that may signal a decline in a patient’s quality of life. Ambient-assisted living using the ACI-RPM combo can also monitor patients for early signs of dementia and Alzheimer’s. 

“The constant monitoring and analysis of patient data in real-time can help in early detection of health issues,” says Collen Clark, Medical Malpractice Lawyer and Founder of Schmidt & Clark LLP. “This allows for quicker interventions and personalized treatment plans, while reducing the risk of medical errors, which can have legal implications related to negligence or malpractice.” 

Any concerning findings from RPM automatically trigger alerts to healthcare providers, allowing them to intervene early with quick, proactive outreach to patients in need. This can prevent avoidable ER visits, hospitalizations, and health emergencies (Augnito, 2023).

Wearable sensors for monitoring and fall detection in seniors

Two doctors chatting in a hallway

Wearable devices such as accelerometers or electrocardiogram sensors can track not only ADLs but also heart rate, glucose level, and respiration rate. They can even remind patients to take their medications (Haque et al., 2020), and detect falls.

As wearable devices and IoT ecosystems in healthcare continue to expand, integrating them with ACI systems can provide continuous personalized monitoring and truly ambient intelligent care. 

Patients can get proactive alerts about potential health issues before they become critical, and get customized recommendations. Streamlining the flow of data from personal sources like fitness trackers to electronic health records via ACI can massively enrich patient profiles for highly tailored care (Augnito, 2023).

Ambient sensors

In one study, researchers installed a depth and thermal sensor inside the bedroom of an older individual and observed 1,690 activities during one month, including 231 instances of caregiver assistance. A convolutional neural network was 86% accurate at detecting assistance. In a different study, researchers collected ten days of video from six individuals in an elderly home and achieved similar results (Haque et al., 2020).

Although the data from visual sensors are promising, they raise privacy concerns in some places like bathrooms, where grooming, bathing and toileting activities occur. To counter this, researchers also explored acoustic and radar sensors. One study used microphones to detect showering and toileting activities with accuracy rates of 93% and 91%, respectively (Haque et al., 2020). 

ACI has tremendous potential. However, it’s important to consider some challenges and limitations.

ACI Caveats and Considerations 

Flatlay of small medical items

The use cases and benefits of ACI are remarkable, but as with any technology, there are still considerations to gain its maximum benefit in the larger healthcare ecosystem.

Bias

ACI systems are dependent on the quality of data used to train algorithms. If that data reflects societal biases, the AI could make flawed judgments and recommendations. There’s also the risk of over-reliance on AI diagnostics versus human expertise. Careful oversight is required to audit algorithms and ensure AI transparency in clinical decision-making (Augnito, 2023).

Data privacy and security

There is a heightened risk of unauthorized access or breaches with ACI. Patients have a right to understand how their data is used with ACI tools during consultations and treatment. Health providers should disclose this information and request patient consent, which is optional. 

“With the continuous stream of patient data being collected, stored, and analyzed by ACI systems, there’s a heightened risk of unauthorized access or breaches,” Clark says. “I would advise hospitals to invest in robust data protection measures and ensure compliance with relevant regulations such as HIPAA. It’s essential to strike a balance between leveraging the benefits of ACI and safeguarding patient privacy to avoid legal repercussions.”

Computational methods to protect privacy include (Haque et al., 2020):

  • differential privacy (adds noise to the collected data)
  • face blurring
  • dimensionality reduction (pixelated images)
  • body masking (replaces people’s images with faceless avatars)
  • federated learning (gradient updates)
  • homomorphic encryption

There is a trade-off between the level of privacy protection provided by each method and the required computational resources. 

Strict regulations around data encryption, access controls, and auditing will be necessary to prevent breaches and protect patient rights. 

Medical decision making

Clark makes a final warning about implementing ACI systems to automate note-taking and other tasks in hospitals. She says shifting responsibility from the clinician to ACI “… could lead to legal discussions around liability in cases where decisions are influenced by AI. It’s crucial for hospitals and medical professionals to establish clear protocols and guidelines, and for legal frameworks to adapt to these changing dynamics, ensuring accountability without stifling technological advancements.”

By seamlessly integrating ACI into healthcare workflows, providers can streamline operations, enable continuous monitoring of patients, and leverage data-driven insights to inform diagnostic and treatment decisions. This integration can significantly improve patient outcomes and reduce the burden on healthcare workers, and ultimately enhance the quality of care they provide.

References

Augnito. How Ambient Clinical Intelligence is Advancing Real-Time Patient Care.

DeepScribe. Ambient Clinical Intelligence—What is it and how will it transform healthcare?

Harper, K. What is ambient clinical intelligence—and how is it transforming healthcare? Nuance. June 16, 2022.

Haque A., Milstein A., & Fei-Fei L. Illuminating the dark spaces of healthcare with ambient intelligence. Nature. 2020; 585(7824):194-198. doi:10.1038/s41586-020-2669-y 

Joshi, N. The Myriad of Applications of Ambient Intelligence in Healthcare. Forbes. January 9, 2022.