Remote patient monitoring (RPM) has become an essential tool for healthcare providers, allowing them to track patient health data outside of traditional clinical settings. The use of remote patient monitoring systems for healthcare providers continues to grow, offering benefits such as improved patient outcomes, reduced hospital readmissions, and enhanced chronic disease management.
This article explores the top RPM systems helping healthcare providers deliver more efficient and personalized care. We’ll discuss the key features to look for and provide guidance on implementing these systems in your practice.
When evaluating RPM systems, several key features can make a significant difference in their effectiveness and usability. Here are the essential elements to consider.
Real-time data collection and transmission
Collecting and transmitting patient data in real time is crucial for timely interventions and effective care management. Look for systems that offer:
Continuous monitoring capabilities
Minimal latency in data transmission
Automatic data syncing between devices and the central platform
User-friendly interfaces for both patients and providers
Ease of use is paramount for both patients and healthcare providers. A good RPM system should have:
Intuitive mobile apps for patients
Clear, easy-to-read dashboards for providers
Customizable views and reports
Integration with existing electronic health record systems
Seamless integration with your current electronic health record (EHR) system can streamline workflows and improve data consistency. Consider systems that offer:
Bi-directional data flow between the RPM platform and EHR
Top Remote Patient Monitoring Systems for Healthcare Providers
Now that we’ve covered the essential features, let’s dive into some of the top RPM systems available to healthcare providers in 2024.
1. HealthSnap
HealthSnap is a comprehensive Virtual Care Management Platform facilitating integrated, continuous remote patient care with chronic care management (CCM). The system is designed to improve health outcomes for patients with chronic conditions.
A primary care practice uses HealthSnap to monitor patients with hypertension, diabetes, and obesity. The cellular-enabled devices allow for easy adoption among elderly patients who may not have reliable internet access.
Optimize Health offers a comprehensive RPM solution that focuses on improving patient outcomes with CCM, while maximizing reimbursements for healthcare providers.
Key Features:
Customizable RPM programs
Integrated billing and reimbursement support
Patient engagement tools
Pros
Cons
Flexible program options
May require more setup time
Strong focus on ROI
Learning curve for customization
Robust patient engagement
Use case
A cardiology practice implements Optimize Health to monitor patients with heart failure, resulting in reduced hospital readmissions and improved medication adherence.
Athelas provides an AI-powered RPM system with a focus on simplicity and preventative care. Their at-home blood diagnostics device is designed to identify health concerns early, potentially reducing the need for hospitalizations.
Key Features:
SIM-connected devices for easy setup
Nurse-monitored health readings
Preventative approach to patient care
Pros
Cons
Simple device setup
Limited device options
Professional monitoring
May have ongoing monitoring costs
Early intervention focus
Use case
A rural health clinic uses Athelas to monitor patients with multiple chronic conditions, leveraging the nurse-monitored system to extend their care team’s capabilities.
Health Recovery Solutions (HRS) offers a clinically-focused RPM platform designed to improve patient satisfaction, reduce hospital readmissions, and optimize clinical workflows.
Key Features:
Comprehensive suite of RPM solutions
Electronic medical records (EMR) integration
24/7 customer and tech support
Pros
Cons
Proven results over 10 years
May be more complex for smaller practices
Customizable solutions
Higher-end pricing
Strong support system
Use case
A large health system implements HRS across multiple specialties, using the platform’s customization options to tailor the RPM program for each department’s needs.
Accuhealth provides a user-friendly RPM platform that emphasizes ease of use for both patients and providers.
Key Features:
Intuitive patient and provider interfaces
AI-powered risk stratification
Integrated telehealth capabilities
Pros
Cons
Easy to use for all ages
May have fewer advanced features
AI-enhanced patient monitoring
Limited customization options
Built-in telehealth
Use case
A family medicine practice adopts Accuhealth to monitor patients with diabetes, using the integrated telehealth feature for quick follow-ups when blood glucose levels are out of range.
Regularly collect and act on feedback from staff and patients.
Monitor key performance indicators to measure success.
Stay up-to-date with RPM technology advancements and regulations.
By carefully considering these factors and following best practices, you can successfully implement an RPM system that enhances patient care and improves your practice’s efficiency.
Conclusion
Remote patient monitoring systems are rapidly becoming essential tools for healthcare providers seeking to improve patient outcomes and streamline operations.
By choosing the right RPM solution, you can enhance the quality of care, reduce hospital readmissions, and empower patients to take an active role in managing their health. Take the first step towards a more connected and efficient practice by exploring the top RPM systems available today.
Chronic diseases affect millions worldwide, placing a significant burden on healthcare systems. The World Health Organization reports that chronic diseases account for 74% of all deaths globally. One of the most promising methods of chronic disease management is remote patient monitoring (RPM). Let’s explore how RPM helps people with chronic disease have a better quality of life.
RPM is a healthcare delivery method that uses technology to collect patient data outside of traditional healthcare settings. But what exactly does this mean for patients and healthcare providers?
Definition of remote patient monitoring
RPM involves using digital technologies to gather and transmit health data from patients to healthcare providers. This allows for continuous monitoring of a patient’s health status without the need for frequent in-person visits.
Key components of RPM systems
A typical RPM system consists of several essential components:
Sensing devices: These collect patient data such as blood pressure, heart rate, or blood glucose levels.
Data transmission: The collected data is sent securely to healthcare providers.
Data analysis: Healthcare professionals review and interpret the data.
Patient interface: Patients can view their data and receive feedback through apps or web portals.
Alert systems: Automated alerts notify healthcare providers of any concerning changes in a patient’s condition (Peyroteo et al., 2021).
Types of data collected through RPM
RPM systems can collect various kinds of health data, including:
This comprehensive data collection allows healthcare providers to gain a more complete picture of a patient’s health over time.
Common Chronic Diseases Managed with RPM
RPM is effective in managing many kinds of chronic conditions. Let’s look at some of the most common diseases that benefit from RPM.
Heart disease, CHF, and hypertension
RPM plays a crucial role in cardiovascular disease management, including heart disease, chronic heart failure (CHF), and hypertension (Zhang, et al., 2023).
Patients can regularly monitor their blood pressure, heart rate, and other vital signs at home. This continuous monitoring helps healthcare providers to adjust medications and interventions as needed, which may prevent heart attacks and strokes.
Diabetes
For patients with diabetes, RPM can be a game-changer. Continuous glucose monitoring systems allow for real-time tracking of blood sugar levels, helping patients and healthcare providers make informed decisions about insulin dosing and lifestyle changes. Studies have shown that RPM can lead to significant improvements in HbA1c levels, a key indicator of long-term blood sugar control.
Chronic kidney disease (CKD)
RPM is becoming increasingly important in kidney care by using technology to support patients who need renal replacement therapy (RRT).
RPM can improve patient outcomes, reduce hospital stays, and enhance treatment adherence. It also saves time and money for both patients and healthcare providers. A care plan for chronic kidney disease that includes RPM can help with patient education, CKD self-management, and home dialysis care. They can increase patient independence and improve their quality of life (Mata-Lima, 2024).
Asthma
For asthma patients, RPM can help track symptoms, medication use, and lung function. This information allows healthcare providers to adjust treatment plans and identify triggers, leading to better asthma control. A review of RPM interventions for asthma found improvements in quality of life and reductions in emergency department visits.
Chronic obstructive pulmonary disease (COPD)
COPD patients can benefit greatly from RPM. When health providers monitor oxygen levels, lung function, and symptoms, they can detect exacerbations early and intervene before hospitalization becomes necessary.
Anemia
Anemia, a condition characterized by a deficiency of red blood cells or hemoglobin, affects millions worldwide. It can lead to fatigue, weakness, and other health complications. RPM can helps manage anemia in many ways:
Early Detection: RPM can help detect anemia-related complications early by collecting data on patients’ blood oxygen levels and other indicators. This allows for timely interventions, reducing the risk of severe health issues.
Now let’s look at specific benefits of using RPM to manage chronic conditions.
Benefits of RPM for Chronic Disease Management
Implementing RPM in chronic disease management has several advantages for both patients and healthcare systems.
Early detection of health issues
One of the most significant advantages of RPM is its ability to detect potential health issues early. By continuously monitoring patient data, healthcare providers can identify concerning trends or sudden changes before they become serious problems. This proactive approach can lead to timely interventions and prevent complications (Peyroteo et al., 2021).
Improved medication adherence
Medication adherence is crucial for managing chronic diseases effectively. RPM systems often include medication reminders and tracking features, which can significantly improve adherence rates. A review of multiple studies found that RPM interventions increased medication adherence by an average of 22%.
Better patient engagement and self-management
RPM empowers patients to take an active role in managing their health. A real-world use study reported RPM helps better adherence to CHF treatment regimens (Patrick et al., 2023). And RPM adherence is associated with better patient outcomes (Sabatier et al., 2022).
By providing real-time feedback and educational resources, these systems help patients better understand their conditions and make informed decisions about their care. This increased engagement can lead to improved health outcomes and quality of life for those living with chronic diseases (Peyroteo et al., 2021).
Reduced hospital readmissions
RPM has shown promising results in reducing hospital readmissions for patients with chronic conditions.
A study published in the Journal of Medical Internet Research found that RPM reduced 30-day hospital readmissions by 76% for patients with heart failure (Bashi et al., 2017). And another study showed a reduction in hospitalizations in chronic obstructive pulmonary disease (COPD) patients using RPM (Polsky et al., 2023).
Fewer trips back to the hospital improves patient outcomes and helps reduce healthcare costs.
Cost savings and effectiveness
Noninvasive RPM can be cost-effective compared to traditional methods for managing chronic disease (De Guzman et al., 2022).
RPM requires an initial investment in equipment and training. But over the long run, it can reduce healthcare costs long-term by preventing expensive health events like hospital readmissions, although those savings may take time to manifest. Technology advances may lower costs over time.
The level of cost-effectiveness also varies by disease and context. Studies on hypertension, COPD, and heart failure show the highest benefits for hypertension. Effectiveness depends on patient targeting and integration into existing healthcare systems. Local factors and clinical settings influence RPM’s cost-effectiveness, which emphasizes the need for tailored implementation plans.
RPM Technologies and Devices
The success of remote patient monitoring relies heavily on the technologies and devices used to collect and transmit patient data. Let’s explore some of the key tools in the RPM arsenal.
Wearable devices and sensors
Wearable technology has come a long way in recent years. These devices can now track a wide range of health metrics, including:
These devices are designed to be easy to use, allowing patients to take accurate measurements at home.
Data transmission and analysis platforms
The backbone of any RPM system is the platform that receives, stores, and analyzes patient data. These platforms use secure cloud-based systems to:
Aggregate data from multiple sources
Apply algorithms to detect patterns and anomalies
Generate alerts for healthcare providers
Provide detailed reports for clinical decision-making
How to Implement RPM in a Healthcare Setting
While the benefits of RPM are clear, implementing these systems in healthcare settings can be challenging. Here are some key considerations for successful RPM implementation.
Choose the right RPM solution
Selecting an appropriate RPM solution is crucial for success. Healthcare providers should consider:
Automatic data transfer to electronic health records
Streamlined workflow for healthcare providers
Comprehensive patient health profiles
A smooth integration takes a collaborative effort between IT teams, RPM vendors, and healthcare staff.
Address privacy and security concerns
As with any system handling sensitive health information, privacy and security are paramount in RPM. Healthcare organizations must:
Implement robust data encryption measures
Ensure compliance with HIPAA and other relevant regulations
Regularly audit and update security protocols
Educate patients on best practices for protecting their health data
Overcoming Challenges in RPM Adoption
While RPM offers numerous benefits, there are several challenges that healthcare organizations must address for successful adoption.
Reimbursement and insurance coverage
One of the primary barriers to RPM adoption has been uncertainty around reimbursement. However, recent changes in healthcare policies have improved the situation:
Medicare now provides reimbursement for certain RPM services
Healthcare providers should stay informed about evolving reimbursement policies and advocate for expanded coverage.
Patient compliance and technology acceptance
For RPM to be effective, patients must consistently use the provided monitoring devices and follow recommended protocols. Strategies to improve compliance include:
Selecting user-friendly devices and apps
Providing ongoing patient education and support
Using motivational techniques, such as gamification or reward programs
Tailoring RPM programs to individual patient needs and preferences
Data management and interpretation
The large volume of data generated by RPM systems can be overwhelming for healthcare providers. To address this challenge:
Implement robust data analytics tools to identify meaningful trends and anomalies
Provide training for healthcare staff on data interpretation
Develop clear protocols for responding to alerts and abnormal readings
Consider incorporating artificial intelligence to assist with data analysis
Regulatory and legal considerations
As RPM technology evolves, regulatory frameworks are struggling to keep pace. Healthcare organizations must navigate:
Evolving FDA regulations for medical devices and software
State-specific telemedicine laws and licensing requirements
International considerations for cross-border remote care
Staying informed about regulatory changes and working with legal experts can help organizations navigate these complex issues.
The Future of RPM in Chronic Disease Management
As technology continues to advance, the future of RPM in chronic disease management looks promising. Here are some exciting developments on the horizon.
Artificial intelligence and machine learning integration
Better understanding of disease trends and risk factors
Enhanced ability to respond to public health crises
Evolving healthcare policies and regulations
As RPM becomes more widespread, we can expect to see:
Continued expansion of reimbursement policies
Development of standardized guidelines for RPM implementation
Increased focus on interoperability standards for health data exchange
Greater emphasis on patient data ownership and privacy rights
Conclusion
RPM offers a proactive approach to chronic disease management that benefits both patients and providers. By enabling continuous, real-time health tracking and timely interventions, RPM can significantly improve patient outcomes, reduce healthcare costs, and enhance the quality of life for those living with chronic conditions.
As technology continues to advance and healthcare systems adapt, the role of RPM in chronic disease management will likely expand, paving the way for more personalized and efficient healthcare delivery. Embracing this innovative approach can lead to a healthier future for millions of people worldwide.
References
Bashi, N., Karunanithi, M., Fatehi, F., Ding, H., & Walters, D. (2017). Remote Monitoring of Patients With Heart Failure: An Overview of Systematic Reviews. Journal of Medical Internet Research; 19(1). doi.org/10.2196/jmir.6571
Centellas-Pérez, F. J., Ortega-Cerrato, A., et al. (2023). Impact of Remote Monitoring on Standardized Outcomes in Nephrology-Peritoneal Dialysis. Clinical Research; 9(2),266-276. doi.org/10.1016/j.ekir.2023.10.034
De Guzman, K. R., Snoswell, C. L., Taylor, M. L., Gray, L. C., & Caffery, L. J. (2022). Economic Evaluations of Remote Patient Monitoring for Chronic Disease: A Systematic Review. Value in Health; 25(6), 897-913. doi.org/10.1016/j.jval.2021.12.001
Mata-Lima, A., Paquete, A. R., & Serrano-Olmedo, J. J. (2024). Remote patient monitoring and management in nephrology: A systematic review. Nefrología. doi.org/10.1016/j.nefro.2024.01.005
Patrick, J., Picard, F., Girerd, N., et al. (2023). Security and performance of remote patient monitoring for chronic heart failure with Satelia® Cardio: first results from real-world use. Journal of Cardiology and Cardiovascular Medicine; 8:042–50. doi:10.29328/journal.jccm.1001152
Peyroteo, M., Ferreira, I. A., Elvas, L. B., Ferreira, J. C., & Lapão, L. V. (2021). Remote Monitoring Systems for Patients With Chronic Diseases in Primary Health Care: Systematic Review. JMIR MHealth and UHealth; 9(12). doi.org/10.2196/28285
Polsky, M., Moraveji, N., Hendricks, A., Teresi, R. K., Murray, R., & Maselli D. J. (2023). Use of Remote Cardiorespiratory Monitoring is Associated with a Reduction in Hospitalizations for Subjects with COPD. International Journal of Chronic Obstructive Pulmonary Disease; 18:219-229. doi.org/10.2147/COPD.S388049
Sabatier, R., Legallois, D., Jodar, M., et al. (2022). Impact of patient engagement in a French telemonitoring programme for heart failure on hospitalization and mortality. ESC Heart Failure; 9(5):2886–2898. doi:10.1002/ehf2.13978
Zhang, Y., Peña, M. T., Fletcher, L. M., Lal, L., Swint, J. M., & Reneker, J. C. (2023). Economic evaluation and costs of remote patient monitoring for cardiovascular disease in the United States: a systematic review. International Journal of Technology Assessment in Health Care;39(1):e25. doi:10.1017/S0266462323000156
Home health monitoring wearables to track blood pressure, heart rate and sleep are popular. A 2022 AnalyticsIQ study of 8,000 Americans showed that we’ve doubled our use of wearable health devices between 2020 and 2021. Almost half of the respondents used at least one type of wearable tech, and Black, Latinx, male, and Gen X respondents used it the most.
This surge in popularity is no surprise, as home health monitoring empowers people to take control of their well-being from the comfort of their own homes.
In this guide, we’ll walk you through the essentials of setting up a home health monitoring system.
Home health monitoring uses technology to track and manage health conditions at home or on the go.
Home health monitoring systems let you monitor various health metrics and share the data with healthcare providers remotely. It includes connected health devices and apps to collect, analyze, and transmit health data, facilitating continuous health management without frequent in-office visits (Story, 2010).
Key benefits of monitoring health at home
Home health monitoring offers numerous advantages:
Increased Health Awareness: People become more aware of their health status, making informed decisions about diet, lifestyle, and treatment options.
Reduced Physical Consultations: Minimizes the need for in-person visits, which can be beneficial for people with mobility issues or those living in remote areas.
Real-Time Intervention: Allows for prompt medical interventions based on real-time data, to prevent potential complications.
Cost Savings: Reduces healthcare costs by decreasing hospital admissions and emergency room visits.
Improved Chronic Disease Management: Enhances the management of chronic conditions through continuous monitoring and timely adjustments to treatment plans.
Trackable health metrics
Home health monitoring can track a wide range of health metrics, including:
Vital Signs: Heart rate, blood pressure, and body temperature.
Biometric Data: Blood glucose levels, blood oxygen saturation (SpO2), and body composition.
Activity Levels: Steps taken, calories burned, and sleep patterns.
Symptoms: Tracking symptoms related to chronic conditions or acute illnesses.
Medical and tech devices for home health monitoring
Several technologies and devices are available for home health monitoring (Dusun, 2024):
Smart Scales: Measure weight and body composition.
Special monitors for dementia and Parkinson’s disease
Breathing apparatuses
Fetal monitors
Let’s review each of the less complex medical devices in turn.
Essential Devices for Home Health Monitoring
Smart scales for weight and body composition
A study in England showed that smart scale users who weighed themselves often were more likely to lose weight, and weigh themselves after recent weight loss (Sperrin et al., 2016).
Smart scales go beyond measuring weight; they can also analyze body composition, including body fat percentage, muscle mass, and bone density. These scales connect to health apps, allowing users to track their progress over time.
Before measuring your body composition:
Don’t drink alcohol for 2 days before measuring.
Avoid exercise, coffee, chocolate, or other diuretics (drinks that make you pee a lot) for 12 hours.
Don’t eat or drink anything for 4 hours before.
Don’t measure if you’re sick with a fever or diarrhea.
Use the bathroom within 30 minutes of measuring.
How to use a smart scale
Mondal & Mondal (2021) recommend the following steps to measure your body composition:
Enter your age, sex, and height into the device.
Stand in the right position to ensure you’re touching the electrodes properly.
If your hands and feet are very dry, use a damp cloth to moisten them.
Stand still during the measurement.
These devices may show body fat as a percentage, but don’t rely on just one measurement. Take three in a row, find the average (add the results, then divide by three), and write it down in a health log or app.
Blood pressure monitors
Blood pressure monitors are essential for people with hypertension or heart conditions. These devices provide accurate readings of systolic and diastolic blood pressure to manage cardiovascular health.
Before taking your blood pressure:
Don’t measure your blood pressure until at least 30 minutes after having tea, coffee, energy drinks, cigarettes, or exercising.
Remove tight clothes and use the bathroom.
How to use a blood pressure monitor
Mondal & Mondal (2021) recommend the following steps to take your blood pressure:
Sit in a chair with back support, and legs uncrossed with feet flat on the floor. Rest your arm on a table at heart level.
Put the cuff on their bare arm and start measuring. Don’t move or talk during the measurement.
Take two readings one minute apart, and take the average of them (add the results, then divide by two). For better accuracy, you can do three readings, but it’s optional.
Write down the final number in a health log or app to track any changes.
Glucose meters for diabetes management
Glucose meters, or glucometers, are crucial for diabetes management, which helps people monitor their blood sugar levels regularly. Some advanced models can sync with smartphones and health apps for easy tracking and data sharing with healthcare providers.
How to use a glucose meter
Mondal & Mondal (2021) recommend the following steps to measure your blood sugar:
Check if that the test strips have not expired.
Wash and dry your hands.
Take a test strip and close the container. Use a new lancet each time.
Put the lancet in the right spot on the device and set how deep it will prick based on what works for you or how thick your skin is.
After loading the device, prick your ring or middle finger. You might need to gently squeeze your finger for enough blood.
Once the blood touches the strip, the meter will take a moment to complete the measurement. The result will show up on the device or your phone.
Throw away the used lancet in a special container for sharp objects and the strip in a biohazard bin. You might need to press your finger with cotton to stop bleeding. You can clean the lancet tip with an alcohol wipe. Write down your blood sugar reading right away in a health log.
Pulse oximeters for oxygen saturation levels
Pulse oximeters measure the oxygen saturation level in the blood, which is vital for people with respiratory conditions like chronic obstructive pulmonary disease (COPD) or COVID-19. These devices are easy to use and provide quick, accurate readings.
Before you take a measurement with a pulse oximeter, remove any nail polish from the finger you’re going to use.
How to use a pulse oximeter
Mondal & Mondal (2021) recommend the following steps to measure your oxygen level:
Wash and dry your hands.
Put the device on your finger so it’s not too loose or tight. Don’t use a finger with a tattoo or henna on it.
Make sure your finger covers the lights and sensor properly.
Avoid bright light, which can cause errors. If you can’t, cover the device with a cloth.
Start the device, and keep your finger still during measurement.
Every few days of use, clean the device with an alcohol wipe to ensure accurate readings.
Wearable fitness trackers and smartwatches
Wearable fitness trackers and smartwatches monitor various health metrics, including heart rate, steps taken, calories burned, and sleep patterns. They are popular for their convenience and integration with health and fitness apps.
Note that sometimes, these devices make errors. These errors can happen because the sensors in these devices aren’t perfect at counting or estimating. For example, fitness trackers worn on the wrist may count fewer steps than you actually take if you walk slowly (Hicks et al., 2019).
ECG monitors
Irregular heartbeats, known as heart rate arrhythmia, are a major sign of common heart diseases and can be very dangerous. Because these irregularities can happen suddenly, are hard to notice, and change quickly, it’s important to keep track of heart rate changes in real-time to spot and prevent problems early (Zhang & Yang, 2023).
A home electrocardiogram (ECG) monitor can track your heart rate. Note that while wearable ECG monitors can detect heart rhythm issues, but may miss some due to intermittent recording. They’re usually expensive and not covered by insurance.
Medical-grade monitors are more accurate, using chest sensors for continuous recording. Personal devices use wrist or finger sensors and may require manual activation, making them less reliable for serious conditions (Samaan, 2022).
Before measuring your heartbeat:
Move electronic devices, metal, and magnets away from the ECG device.
Sit quietly for 5 minutes.
How to use
Mondal & Mondal (2021) recommend the following steps to analyze your heartbeat:
If your hands are dry, use a damp cloth to moisten them.
Follow the instructions to place the electrodes correctly.
Start the device. Don’t move or talk during the measurement.
Have a doctor look at the results afterward.
Medication adherence trackers
Taking your medication as prescribed is a critical part of your overall health and wellness. To help you remember when to take your meds, use one or more medication adherence monitoring technologies like:
Medication reminder apps
Electronic pill boxes, bags, or bottles
Ingestible sensors
Blister packs
While these devices offer real-time data and improve adherence monitoring, they face challenges like accuracy issues and expensive implementation. Most rely on proxy measures like device opening events, limiting data precision, and integration with clinical systems is a challenge. (Mason et al., 2022).
Next, we’ll learn how to pick the right health monitoring device for your specific needs.
Choosing the Right Monitoring Devices
Factors to consider when selecting devices
When choosing home health monitoring devices, consider the following factors:
Ease of Use: Devices should be user-friendly, especially for those with limited technical skills.
Accuracy and Reliability: Look for devices with proven accuracy and reliability, supported by clinical validation.
Compatibility: Ensure devices are compatible with your smartphone, tablet, or other health platforms.
Battery Life: Consider devices with long battery life to avoid frequent recharging.
Customer Support: Opt for brands that offer robust customer support and warranty services.
Compatibility with smartphones and other tech
Many home health monitoring devices are designed to sync with smartphones and other tech platforms. This integration allows for seamless data transfer, real-time monitoring, and easy access to health metrics through dedicated apps.
Accuracy and reliability of different brands
To ensure you choose the right device, check that the device is approved by the proper authority such as the FDA or ISO (Mondal & Mondal, 2021).
Research and reviews can also help determine the accuracy and reliability of different brands. Look for devices with positive feedback from users and healthcare professionals, and check for any clinical validation or certifications.
Once you get your medical device, it’s important to use them properly, and calibrate them at the intervals the manufacturer recommends to maintain its accuracy (Mondal & Mondal, 2021).
Budget considerations and cost-effectiveness
While some advanced devices can be expensive, there are cost-effective options available that still offer reliable performance. Consider your budget and prioritize devices that provide the best value for money without compromising on essential features.
Once you’ve chosen your devices, it’s vital to address the important aspects of data protection and privacy.
Privacy and Security Considerations
Home health monitoring and remote patient monitoring (RPM) are part of telehealth. Telehealth provides convenience, but also comes with security risks and issues (Houser et al., 2023):
Environmental issues: Some people don’t have a private space at home to discuss their health.
Let’s look at a few best practices to protect and secure your personal health information.
Protect your health data from breaches
Health data is sensitive and must be protected from breaches. Some tips:
Use strong passwords for your health apps and devices.
Turn on two-factor authentication in your apps.
Use email, chat, or messages through the patient portal. This is especially useful when a private location is temporarily unavailable. If the situation isn’t temporary, ask your health provider for suggestions (Houser et al., 2023).
Regularly update your software to protect against vulnerabilities.
Understand data ownership and sharing policies
Some apps may share data with third parties for research or marketing purposes. Read the privacy policies of your health apps and devices to understand who owns your data and they share it. Opt for apps that prioritize user privacy and offer clear data ownership policies.
Secure your home network for health devices
Some tips to secure your home network include:
Use a strong Wi-Fi password and enabling network encryption.
Check the URL address bar of your browser before you enter your personal information on a website. A secure website will show a lock icon in the address bar, and look for https:// at the beginning of the URL (as some do not include the “s”).
Install and use anti-virus software on your devices.
Avoid using public Wi-Fi networks for health monitoring, as they are more susceptible to breaches.
Check compliance with health data regulations
Health Insurance Portability and Accountability Act (HIPAA) is a regulation in the U.S. that protects the privacy and security of people’s personal health information. Check whether your health monitoring devices and apps are HIPAA-compliant before you use them, or the similar standards in your region if you’re not in the U.S. (Gerke et al., 2020).
Now that you know how to secure your data, it’s time to create an effective monitoring environment in your home.
Setting Up Your Home Health Monitoring System
Create a dedicated space for health monitoring
Designate a specific area in your home for health monitoring. This space should be quiet, well-lit, and free from distractions to ensure accurate measurements. Keep all your monitoring devices and accessories organized and easily accessible.
Connect devices to your home network
Most home health monitoring devices use Wi-Fi or Bluetooth to connect to your home network. Follow the manufacturer’s instructions to pair each device with your smartphone or tablet. Ensure your home network is secure to protect your health data.
Sync devices with health apps and platforms
Download the necessary health apps for your devices and create accounts if required. Synchronize your devices with these apps to enable data transfer and real-time monitoring. Popular health platforms include Apple Health, Google Fit, and dedicated apps from device manufacturers.
Set a daily routine for regular measurements
Consistency is key to effective home health monitoring. Establish a routine for taking measurements, such as checking your blood pressure every morning or measuring your blood glucose levels before meals. Set reminders on your smartphone to help you stay on track.
With your system set up, let’s see how to make sense of the data you’re collecting.
Interpreting and Using Health Data
Learn about health metrics
Get familiar with the health metrics your devices track, and understand what they mean. For example, know the normal ranges for blood pressure, blood glucose, and oxygen saturation levels. Health apps often provide explanations and visualizations to help you interpret the data (Chan et al., 2022).
Recognize normal ranges and potential red flags
Knowing the normal ranges for your health metrics allows you to identify potential red flags. For instance, a consistently high blood pressure reading may indicate hypertension, while low oxygen saturation levels could signal respiratory issues (Chan et al., 2022). Consult your healthcare provider if you notice any abnormal readings.
Set health goals and track progress
Use the data from your monitoring devices to set health goals, such as achieving a target weight or maintaining stable blood glucose levels. Track your progress over time and adjust your goals as needed. Health apps often offer goal-setting features and progress-tracking tools.
Share data with healthcare providers securely
Many health apps allow you to share your data with healthcare providers securely. This can be done through app integrations, email, or cloud storage platforms. Sharing your data helps your healthcare provider make informed decisions about your treatment plan and monitor your progress remotely.
Maximizing the Benefits of Home Health Monitoring
To get the most out of your home health monitoring system, consider these strategies for integrating it into your daily life.
Integrate monitoring in your daily routine
Include health monitoring into your daily routine to make it a habit. For example, you can check your blood pressure while having your morning coffee or track your steps during your evening walk. Consistency ensures accurate data and better health management (Kariuki, n.d.).
Make lifestyle improvements
Use the insights from your health data to make positive lifestyle changes. For instance, if your fitness tracker shows low activity levels, you can set a goal to increase your daily steps. If your blood glucose levels are high, you can adjust your diet and exercise routine accordingly (Kariuki, n.d.).
Combine monitoring with telehealth services
Telehealth services complement home health monitoring by providing remote consultations with healthcare providers. Share your health data during these virtual visits to receive personalized advice and treatment plans. Telehealth can be especially beneficial for managing chronic conditions and reducing the need for in-person visits.
Involve your family in health-tracking
Involving family members in your health monitoring can provide additional support and motivation. Share your health goals and progress with them, and encourage them to participate in health-tracking activities. This can create a supportive environment and improve overall health outcomes.
Conclusion
Setting up a home health monitoring system is a proactive step to take charge of your well-being. Once you choose the right devices, set a consistent monitoring routine, and learn how to interpret your health data, you can gain valuable insights into your body’s needs and trends.
Remember, home health monitoring is no substitute for professional medical advice. Use your newfound knowledge to have more informed discussions with your healthcare provider, ask questions, and make proactive decisions about your health. With the right approach, home health monitoring can lead to better health outcomes and an improved quality of life.
Which health monitors and wearables do you use, and how do they help you?
References
Chan, A., Cohen, R., Robinson, M., Bhardwaj, D., Gregson, G., Jutai, J. W., Millar, J., Rincón, A. R., & Fekr, A. R. (2022). Evidence and User Considerations of Home Health Monitoring for Older Adults: Scoping Review. JMIR Mhealth Uhealth, 5(4). doi.org/10.2196/40079
Gerke, S., Shachar, C., Chai, P. R., & Cohen, I. G. (2020). Regulatory, safety, and privacy concerns of home monitoring technologies during COVID-19. Nature Medicine, 26(8), 1176. doi.org/10.1038/s41591-020-0994-1
Hicks, J. L., Althoff, T., Sosic, R., Kuhar, P., Bostjancic, B., King, A. C., Leskovec, J., & Delp, S. L. (2019). Best practices for analyzing large-scale health data from wearables and smartphone apps. Npj Digital Medicine; 2(1), 1-12. doi.org/10.1038/s41746-019-0121-1
Houser, S. H., Flite, C. A., & Foster, S. L. (2023). Privacy and Security Risk Factors Related to Telehealth Services – A Systematic Review. Perspectives in Health Information Management; 20(1).
Imtyaz Ahmed, M., & Kannan, G. (2022). Secure and lightweight privacy preserving Internet of things integration for remote patient monitoring. Journal of King Saud University – Computer and Information Sciences; 34(9), 6895-6908. doi.org/10.1016/j.jksuci.2021.07.016
Mason, M., Cho, Y., Rayo, J., Gong, Y., Harris, M., & Jiang, Y. (2022). Technologies for Medication Adherence Monitoring and Technology Assessment Criteria: Narrative Review. JMIR MHealth and UHealth; 10(3). doi.org/10.2196/35157
Mondal, H., & Mondal, S. (2021). Basic technology and proper usage of home health monitoring devices. Malaysian Family Physician: The Official Journal of the Academy of Family Physicians of Malaysia;16(1), 8-14. doi.org/10.51866/rv1097
Sperrin, M. et al. (2016). Who self-weighs and what do they gain from it? A retrospective comparison between smart scale users and the general population in England. Journal of Medical Internet Research; 18, e17.
Story, M. F. (2010). National Research Council (US) Committee on the Role of Human Factors in Home Health Care. The Role of Human Factors in Home Health Care: Workshop Summary. Washington (DC): National Academies Press (US); 8, Medical Devices in Home Health Care. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK210047/