The Future of Telehealth: Trends and Predictions for 2025 and Beyond

The Future of Telehealth: Trends and Predictions for 2025 and Beyond

AI Health Tech Med Tech

In 2020, the COVID-19 pandemic sparked a 78% uptick in telehealth usage. As we look to the future, telehealth is poised to become an integral part of healthcare delivery. 

This article explores the exciting innovations and trends that will shape the future of telehealth, promising to enhance patient care, improve accessibility, and streamline healthcare operations.

To understand the future of telehealth, we first need to look at the new technologies that are changing how we provide care.

Contents

Emerging Technologies in Telehealth

The future of telehealth is closely tied to advancements in technology. Several cutting-edge innovations are set to reshape virtual care in the coming years.

Artificial intelligence and machine learning in diagnostics

Phone with chatbot conversation

AI and machine learning (ML) can analyze large amounts of medical data to assist healthcare providers in making more accurate diagnoses and treatment recommendations.

For example, AI-powered diagnostic tools can examine medical images like X-rays or MRIs and flag potential issues for review by human doctors. 

AI chatbots are also being developed to conduct initial patient screenings and triage. These chatbots can ask patients about their symptoms and medical history, then direct them to appropriate care options whether that’s a virtual doctor visit, in-person visit, or emergency services.

Internet of Medical Things for remote patient monitoring

The Internet of Medical Things (IoMT) refers to connected medical devices and applications that can collect and transmit health data. This technology enables continuous remote monitoring of patients’ vital signs and other health metrics.

Some examples of IoMT devices include:

5G networks enabling real-time, high-quality video visits

The rollout of 5G networks dramatically improves the quality and reliability of video-based telehealth services. 5G offers much faster data speeds and lower latency compared to 4G networks.

In fact, 5G technology can reduce video latency to less than 2 milliseconds, enabling real-time interaction during virtual doctor visits comparable to in-person visits.

For telehealth, this means:

  • Higher-quality video and audio for virtual visits

  • The ability to transmit large medical files like MRIs quickly

  • More reliable connections in rural or remote areas

  • Support for bandwidth-intensive applications like augmented reality

Take a look at a diagram that shows how connected medical devices interoperate across different systems (Deloitte, 2021).

How connected medical devices interoperate across different systems
Source: Deloitte

Virtual and augmented reality applications in telemedicine

Virtual reality (VR) and augmented reality (AR) have exciting potential applications in telehealth:

For instance, a 2018 study in the Journal of Visualized Experiments found that VR-based physical therapy for stroke patients greatly improved upper limb function compared to conventional therapy (Choi & Paik, 2018).

While technology is important, telehealth’s real strength is in making specialized care available to more people.

Expanding Access to Specialized Care

One of telehealth’s greatest promises is improving access to specialized medical care, especially for underserved populations.

Telepsychiatry bridging the mental health treatment gap

Mental health care has long suffered from accessibility issues, with many areas facing severe shortages of psychiatrists and therapists. Telepsychiatry is helping to bridge this gap.

A 2016 study in the World Journal of Psychiatry found that telepsychiatry was as effective as in-person care for treating depression, with the added benefit of increased patient satisfaction and engagement (Hubley et al., 2016).

Telepsychiatry is particularly valuable for:

  • Rural communities with few local mental health providers

  • Patients with mobility issues or transportation barriers

  • People seeking specialized treatments not available locally

  • Those who prefer the privacy and convenience of at-home care

Remote visits with specialists for rural and underserved areas

Telehealth is bringing specialized medical expertise to areas that previously had little or no access. This includes:

  • Remote dermatology visits using high-resolution images

  • Virtual neurology assessments for stroke patients

  • Tele-oncology services for cancer patients in rural areas

School-based telehealth programs improving pediatric care

School-based telehealth programs are emerging as a powerful tool for improving children’s health, especially in underserved communities. These programs typically involve:

Halterman et al (2017) found that school-based telehealth programs reduced emergency department visits and improved asthma outcomes for children in rural communities.

Virtual second opinions from leading medical experts

Telehealth is making it easier for patients to get second opinions from top specialists, regardless of geographic location. This can be particularly valuable for complex or rare conditions.

Several major medical centers now offer formal virtual second opinion programs. For example, the Mayo Clinic’s eConsults program provides written second opinions from Mayo Clinic specialists based on a review of medical records and test results.

Telehealth is also changing how we approach personalized care and monitoring for patients.

Personalized Medicine and Remote Monitoring

The integration of telehealth with other digital health technologies is enabling more personalized and proactive care.

Wearable devices for continuous health tracking

Monitor attached to back of a woman's left shoulder

Wearable devices like smartwatches and fitness trackers are increasingly being used for medical monitoring. These devices can track:

  • Heart rate and rhythm

  • Blood oxygen levels

  • Sleep patterns

  • Physical activity levels

  • Stress indicators

This continuous data collection allows for more comprehensive health monitoring between doctor visits.

Monitoring services are poised to continue incredible growth over the next several years, as depicted in the following chart (Gupta, 2024).

Source: Appinventiv

AI-powered predictive analytics for early intervention

By analyzing data from wearables, electronic health records (EHRs), and other sources, AI algorithms can predict health risks and recommend early interventions.

Some applications can help clinicians to:

  • Predict heart attacks or strokes based on subtle changes in vital signs

  • Identify patients at risk of developing diabetes

  • Forecast mental health crises based on behavioral patterns

Genomics and telehealth integration for tailored treatments

genetic markers

The combination of telehealth and genomic medicine is opening up new possibilities for personalized treatment plans. Patients can now receive genetic counseling and testing remotely, with results informing tailored treatment recommendations.

For example, pharmacogenomic testing can help determine which medications are likely to be most effective for a particular patient based on their genetic profile. 

Remote medication management and adherence monitoring

Poor medication adherence is a major challenge in healthcare, contributing to worse health outcomes and increased costs. Telehealth-enabled medication management tools can help by:

  • Sending reminders to take medications

  • Tracking medication usage through smart pill bottles or ingestible sensors

  • Allowing remote adjustments to medication regimens

  • Providing education about medications and potential side effects

As telehealth grows, we need to update the rules and regulations that guide its use.

Regulatory Landscape and Telehealth Adoption

Law books and scales with plant and shield

The rapid growth of telehealth has prompted significant regulatory changes, with more likely to come as the technology continues to evolve.

Evolving reimbursement policies for virtual care

One of the biggest barriers to telehealth adoption has been inconsistent reimbursement policies. However, the COVID-19 pandemic led to significant policy changes:

  • Medicare expanded coverage for telehealth services.

  • Many private insurers increased telehealth coverage.

  • Some states mandated payment parity between in-person and virtual visits.

As we move forward, key questions include:

  • Will expanded telehealth coverage become permanent?

  • How will reimbursement rates for virtual care compare to in-person visits?

  • What types of telehealth services will be covered?

Data privacy and security considerations in telehealth

medical papers and stethoscope

The growth of telehealth raises important questions about patient data privacy and security. Key concerns include ways to:

  • Ensure secure transmission of sensitive medical information

  • Protect patient data stored in telehealth platforms

  • Maintain privacy during video visits

Healthcare providers and telehealth companies must comply with regulations like HIPAA in the U.S.

Licensing and cross-state practice regulations

Traditionally, healthcare providers have been limited to practicing in states where they hold a license. This poses challenges for telehealth, which can easily cross state lines.

Some recent developments include:

  • The Interstate Medical Licensure Compact, which streamlines licensing for doctors in multiple states

  • Temporary waivers of state licensing requirements during the COVID-19 pandemic

  • Proposals for a national telemedicine license

Global telehealth initiatives and international cooperation

People around a globe

Telehealth has the potential to improve healthcare access globally, particularly in developing countries with limited medical infrastructure.

Some notable international telehealth initiatives include:

  • The World Health Organization’s Global Strategy on Digital Health

  • The European Union’s eHealth Network

  • The African Alliance of Digital Health Networks

Even with its many benefits, telehealth faces challenges that we must tackle to make it work for everyone.

Overcoming Challenges in Telehealth Implementation

While telehealth offers tremendous potential, several challenges must be addressed to ensure its effective and equitable implementation.

Addressing the digital divide and ensuring equitable access

The “digital divide” the gap between those who have access to technology and those who don’t poses a significant challenge for telehealth adoption.

Key issues include:

  • Lack of broadband internet access in rural areas

  • Limited digital literacy among some patient populations

  • Affordability of devices needed for telehealth

Potential solutions include:

  • Government initiatives to expand broadband access

  • Programs to provide telehealth-enabled devices to underserved populations

  • Digital literacy training for patients

Training healthcare providers in virtual care best practices

Many healthcare providers lack formal training in delivering care via telehealth. This can lead to suboptimal patient experiences and outcomes.

Key areas for provider training include:

  • Effective communication in virtual settings

  • Conducting remote physical exams

  • Managing technical issues during visits

  • Ensuring patient privacy and data security

Integrating telehealth with existing healthcare systems

For telehealth to reach its full potential, it needs to be seamlessly integrated with existing healthcare systems and workflows. This includes:

  • Integrating telehealth platforms with EHRs

  • Developing protocols for when to use telehealth vs. in-person care

  • Ensuring continuity of care between virtual and in-person visits

  • Adapting billing and administrative processes for telehealth

Health providers are set to invest heavily in virtual health applications in the next 5 to 10 years, as shown in the following chart (Gupta, 2024).

Source: Appinventiv

Managing patient expectations and building trust in virtual care

For many patients, telehealth represents a significant shift in how they receive care. Building trust and managing expectations is crucial for successful adoption.

Key considerations include how to:

A recent Health Information National Trends Survey found that 70% of U.S. adults with recent telehealth visits used audio-video, and 75% felt their telehealth visits were as good as in-person care (Spaulding et al., 2024). 

Conclusion

As technology advances and adoption grows, we can expect more personalized, accessible, and efficient care. However, success will depend on addressing challenges such as the digital divide and regulatory hurdles. 

By embracing AI and other technological innovations, we can create a healthcare system that truly meets the needs of patients in the digital age. Patients, providers, and policymakers must work together to shape this exciting future of healthcare.

References

Choi, H., & Paik, J. (2018). Mobile Game-based Virtual Reality Program for Upper Extremity Stroke Rehabilitation. Journal of Visualized Experiments: JoVE; (133). doi.org/10.3791/56241

Deloitte. (2021). Medtech and the Internet of Medical Things: How connected medical devices are transforming health care. Retrieved from https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Life-Sciences-Health-Care/gx-lshc-medtech-iomt-brochure.pdf

General FAQs About the Compact. (n.d.). Interstate Medical Licensure Compact. Retrieved from https://www.imlcc.org/faqs/

Gupta, D. (2024). 7 Telemedicine Trends Shaping the Future of Healthcare. Appinventiv. Retrieved from https://appinventiv.com/blog/top-telehealth-trends/

Halterman, J. S., Tajon, R., Tremblay, P., Fagnano, M., Butz, A., Perry, T., & McConnochie, K. (2017). Development of School-Based Asthma Management Programs in Rochester, NY Presented in Honor of Dr. Robert Haggerty. Academic Pediatrics; 17(6), 595. doi.org/10.1016/j.acap.2017.04.008 

Hubley, S., Lynch, S. B., Schneck, C., Thomas, M., & Shore, J. (2016). Review of key telepsychiatry outcomes. World Journal of Psychiatry, 6(2), 269–282. doi.org/10.5498/wjp.v6.i2.269

Marley, R. (2021). 8 key trends driving the future of telehealth. Healthcare Transformers. Retrieved from https://healthcaretransformers.com/digital-health/current-trends/future-of-telehealth/

More care close to home. (2024). MayoClinic. Retrieved from https://www.mayoclinic.org/about-mayo-clinic/care-network/more-care-close-to-home

Spaulding, E. M., Fang, M., Chen, Y., Commodore-Mensah, Y., Himmelfarb, C. R., Martin, S. S., & Coresh, J. (2024). Satisfaction with Telehealth Care in the United States: Cross-Sectional Survey. Telemed J E Health. 2024 Jun;30(6):1549-1558. doi:10.1089/tmj.2023.0531

Remote Patient Monitoring: Improving Chronic Disease Management 

Remote Patient Monitoring: Improving Chronic Disease Management 

AI Health Tech Med Tech

Chronic diseases affect millions worldwide, placing a significant burden on healthcare systems. The World Health Organization reports that chronic diseases account for 74% of all deaths globally. One of the most promising methods of chronic disease management is remote patient monitoring (RPM). Let’s explore how RPM helps people with chronic disease have a better quality of life.

Contents

What is Remote Patient Monitoring?

RPM is a healthcare delivery method that uses technology to collect patient data outside of traditional healthcare settings. But what exactly does this mean for patients and healthcare providers?

Definition of remote patient monitoring

RPM involves using digital technologies to gather and transmit health data from patients to healthcare providers. This allows for continuous monitoring of a patient’s health status without the need for frequent in-person visits.

Key components of RPM systems

ECG monitor closeup on stomach

A typical RPM system consists of several essential components:

  1. Sensing devices: These collect patient data such as blood pressure, heart rate, or blood glucose levels.

  2. Data transmission: The collected data is sent securely to healthcare providers.

  3. Data analysis: Healthcare professionals review and interpret the data.

  4. Patient interface: Patients can view their data and receive feedback through apps or web portals.

  5. Alert systems: Automated alerts notify healthcare providers of any concerning changes in a patient’s condition (Peyroteo et al., 2021).

Types of data collected through RPM

RPM systems can collect various kinds of health data, including:

This comprehensive data collection allows healthcare providers to gain a more complete picture of a patient’s health over time.

Common Chronic Diseases Managed with RPM

RPM is effective in managing many kinds of chronic conditions. Let’s look at some of the most common diseases that benefit from RPM.

Heart disease, CHF, and hypertension

RPM plays a crucial role in cardiovascular disease management, including heart disease, chronic heart failure (CHF), and hypertension (Zhang, et al., 2023). 

Patients can regularly monitor their blood pressure, heart rate, and other vital signs at home. This continuous monitoring helps healthcare providers to adjust medications and interventions as needed, which may prevent heart attacks and strokes.

Diabetes

Woman sticking herself with insulin needle

For patients with diabetes, RPM can be a game-changer. Continuous glucose monitoring systems allow for real-time tracking of blood sugar levels, helping patients and healthcare providers make informed decisions about insulin dosing and lifestyle changes. Studies have shown that RPM can lead to significant improvements in HbA1c levels, a key indicator of long-term blood sugar control.

Chronic kidney disease (CKD)

Woman on dialysis machine

RPM is becoming increasingly important in kidney care by using technology to support patients who need renal replacement therapy (RRT). 

RPM can improve patient outcomes, reduce hospital stays, and enhance treatment adherence. It also saves time and money for both patients and healthcare providers. A care plan for chronic kidney disease that includes RPM can help with patient education, CKD self-management, and home dialysis care. They can increase patient independence and improve their quality of life (Mata-Lima, 2024).

Asthma

Boy in bed using inhaler

For asthma patients, RPM can help track symptoms, medication use, and lung function. This information allows healthcare providers to adjust treatment plans and identify triggers, leading to better asthma control. A review of RPM interventions for asthma found improvements in quality of life and reductions in emergency department visits.

Chronic obstructive pulmonary disease (COPD)

COPD patients can benefit greatly from RPM. When health providers monitor oxygen levels, lung function, and symptoms, they can detect exacerbations early and intervene before hospitalization becomes necessary.

 

Anemia

Anemia, a condition characterized by a deficiency of red blood cells or hemoglobin, affects millions worldwide. It can lead to fatigue, weakness, and other health complications. RPM can helps manage anemia in many ways:

  • Early Detection: RPM can help detect anemia-related complications early by collecting data on patients’ blood oxygen levels and other indicators. This allows for timely interventions, reducing the risk of severe health issues.

Now let’s look at specific benefits of using RPM to manage chronic conditions.

Benefits of RPM for Chronic Disease Management

Implementing RPM in chronic disease management has several advantages for both patients and healthcare systems. 

Early detection of health issues

One of the most significant advantages of RPM is its ability to detect potential health issues early. By continuously monitoring patient data, healthcare providers can identify concerning trends or sudden changes before they become serious problems. This proactive approach can lead to timely interventions and prevent complications (Peyroteo et al., 2021).

Improved medication adherence

Medication adherence is crucial for managing chronic diseases effectively. RPM systems often include medication reminders and tracking features, which can significantly improve adherence rates. A review of multiple studies found that RPM interventions increased medication adherence by an average of 22%.

Better patient engagement and self-management

Man taking pulse oximeter reading

RPM empowers patients to take an active role in managing their health. A real-world use study reported RPM helps better adherence to CHF treatment regimens (Patrick et al., 2023). And RPM adherence is associated with better patient outcomes (Sabatier et al., 2022).

By providing real-time feedback and educational resources, these systems help patients better understand their conditions and make informed decisions about their care. This increased engagement can lead to improved health outcomes and quality of life for those living with chronic diseases (Peyroteo et al., 2021).

Reduced hospital readmissions

ER and urgent care entrance

RPM has shown promising results in reducing hospital readmissions for patients with chronic conditions. 

A study published in the Journal of Medical Internet Research found that RPM reduced 30-day hospital readmissions by 76% for patients with heart failure (Bashi et al., 2017). And another study showed a reduction in hospitalizations in chronic obstructive pulmonary disease (COPD) patients using RPM (Polsky et al., 2023).

Fewer trips back to the hospital improves patient outcomes and helps reduce healthcare costs.

Cost savings and effectiveness

Noninvasive RPM can be cost-effective compared to traditional methods for managing chronic disease (De Guzman et al., 2022).

RPM requires an initial investment in equipment and training. But over the long run, it can reduce healthcare costs long-term by preventing expensive health events like hospital readmissions, although those savings may take time to manifest. Technology advances may lower costs over time.

The level of cost-effectiveness also varies by disease and context. Studies on hypertension, COPD, and heart failure show the highest benefits for hypertension. Effectiveness depends on patient targeting and integration into existing healthcare systems. Local factors and clinical settings influence RPM’s cost-effectiveness, which emphasizes the need for tailored implementation plans.

RPM Technologies and Devices

The success of remote patient monitoring relies heavily on the technologies and devices used to collect and transmit patient data. Let’s explore some of the key tools in the RPM arsenal.

Wearable devices and sensors

Black woman smiling at phone with glucose meter on arm

Wearable technology has come a long way in recent years. These devices can now track a wide range of health metrics, including:

Many of these devices are designed to be comfortable and discreet, allowing for continuous monitoring without disrupting daily life.

Mobile health apps

Mobile health apps serve as the interface between patients and their health data. These apps often provide:

  • Data visualization and trends

  • Medication reminders

  • Educational resources

  • Communication tools for connecting with healthcare providers

The user-friendly nature of these apps makes it easier for patients to stay engaged with their health management.

Home-based monitoring equipment

Black man using his blood pressure monitor at home

For more specialized monitoring, home-based equipment can provide detailed health information. This may include:

These devices are designed to be easy to use, allowing patients to take accurate measurements at home.

Data transmission and analysis platforms

The backbone of any RPM system is the platform that receives, stores, and analyzes patient data. These platforms use secure cloud-based systems to:

  • Aggregate data from multiple sources

  • Apply algorithms to detect patterns and anomalies

  • Generate alerts for healthcare providers

  • Provide detailed reports for clinical decision-making

How to Implement RPM in a Healthcare Setting

While the benefits of RPM are clear, implementing these systems in healthcare settings can be challenging. Here are some key considerations for successful RPM implementation.

Choose the right RPM solution

Selecting an appropriate RPM solution is crucial for success. Healthcare providers should consider:

  • The specific needs of their patient population

  • Integration capabilities with existing electronic health record systems

  • User-friendliness for both patients and healthcare staff

  • Scalability to accommodate future growth

It’s important to evaluate multiple options and pilot test solutions before full implementation.

Train healthcare providers and patients

Nurse going over a chart with patient

Proper training is essential for both healthcare providers and patients to ensure effective use of RPM systems. This may include:

  • Hands-on training sessions for healthcare staff

  • Patient education materials and support resources

  • Ongoing technical support for troubleshooting issues

Investing in comprehensive training can significantly improve adoption rates and overall success of RPM programs.

Integrate RPM with existing health IT systems

Seamless integration with existing health information technology systems is crucial for success with RPM, which allows for:

  • Automatic data transfer to electronic health records

  • Streamlined workflow for healthcare providers

  • Comprehensive patient health profiles

A smooth integration takes a collaborative effort between IT teams, RPM vendors, and healthcare staff.

Address privacy and security concerns

As with any system handling sensitive health information, privacy and security are paramount in RPM. Healthcare organizations must:

  • Implement robust data encryption measures

  • Ensure compliance with HIPAA and other relevant regulations

  • Regularly audit and update security protocols

  • Educate patients on best practices for protecting their health data

Overcoming Challenges in RPM Adoption

While RPM offers numerous benefits, there are several challenges that healthcare organizations must address for successful adoption.

Man holding Medicare card

Reimbursement and insurance coverage

One of the primary barriers to RPM adoption has been uncertainty around reimbursement. However, recent changes in healthcare policies have improved the situation:

  • Medicare now provides reimbursement for certain RPM services

  • Many private insurers are following suit because they understand the cost-saving potential of RPM

Healthcare providers should stay informed about evolving reimbursement policies and advocate for expanded coverage.

Patient compliance and technology acceptance

Glucose meter on hand with a blood drop

For RPM to be effective, patients must consistently use the provided monitoring devices and follow recommended protocols. Strategies to improve compliance include:

  • Selecting user-friendly devices and apps

  • Providing ongoing patient education and support

  • Using motivational techniques, such as gamification or reward programs

  • Tailoring RPM programs to individual patient needs and preferences

Data management and interpretation

The large volume of data generated by RPM systems can be overwhelming for healthcare providers. To address this challenge:

  • Implement robust data analytics tools to identify meaningful trends and anomalies

  • Provide training for healthcare staff on data interpretation

  • Develop clear protocols for responding to alerts and abnormal readings

  • Consider incorporating artificial intelligence to assist with data analysis

As RPM technology evolves, regulatory frameworks are struggling to keep pace. Healthcare organizations must navigate:

  • Evolving FDA regulations for medical devices and software

  • State-specific telemedicine laws and licensing requirements

  • International considerations for cross-border remote care

Staying informed about regulatory changes and working with legal experts can help organizations navigate these complex issues.

The Future of RPM in Chronic Disease Management

As technology continues to advance, the future of RPM in chronic disease management looks promising. Here are some exciting developments on the horizon.

Artificial intelligence and machine learning integration

AI and machine learning take RPM to the next level as they can:

Expansion of RPM to new disease areas

While RPM has proven effective for common chronic conditions, we’re likely to see its application expand to other areas, such as:

  • Mental health monitoring

  • Neurological conditions like Parkinson’s disease

  • Post-surgical recovery and rehabilitation

  • Rare diseases that require specialized monitoring

Potential for population health management

People around a globe

RPM data, when aggregated and analyzed at a population level, can provide valuable insights for public health initiatives. This could lead to:

  • More targeted health interventions

  • Improved resource allocation in healthcare systems

  • Better understanding of disease trends and risk factors

  • Enhanced ability to respond to public health crises

Evolving healthcare policies and regulations

As RPM becomes more widespread, we can expect to see:

  • Continued expansion of reimbursement policies

  • Development of standardized guidelines for RPM implementation

  • Increased focus on interoperability standards for health data exchange

  • Greater emphasis on patient data ownership and privacy rights

Conclusion 

RPM offers a proactive approach to chronic disease management that benefits both patients and providers. By enabling continuous, real-time health tracking and timely interventions, RPM can significantly improve patient outcomes, reduce healthcare costs, and enhance the quality of life for those living with chronic conditions.

As technology continues to advance and healthcare systems adapt, the role of RPM in chronic disease management will likely expand, paving the way for more personalized and efficient healthcare delivery. Embracing this innovative approach can lead to a healthier future for millions of people worldwide.

References

Bashi, N., Karunanithi, M., Fatehi, F., Ding, H., & Walters, D. (2017). Remote Monitoring of Patients With Heart Failure: An Overview of Systematic Reviews. Journal of Medical Internet Research; 19(1). doi.org/10.2196/jmir.6571

Centellas-Pérez, F. J., Ortega-Cerrato, A., et al. (2023). Impact of Remote Monitoring on Standardized Outcomes in Nephrology-Peritoneal Dialysis. Clinical Research; 9(2),266-276. doi.org/10.1016/j.ekir.2023.10.034

De Guzman, K. R., Snoswell, C. L., Taylor, M. L., Gray, L. C., & Caffery, L. J. (2022). Economic Evaluations of Remote Patient Monitoring for Chronic Disease: A Systematic Review. Value in Health; 25(6), 897-913. doi.org/10.1016/j.jval.2021.12.001

Fakunle, A. (2022). The Future of Healthcare: How Remote Patient Monitoring Transforms Healthcare. Cleverdev Software. Retrieved from https://www.cleverdevsoftware.com/blog/the-future-of-healthcare

Mata-Lima, A., Paquete, A. R., & Serrano-Olmedo, J. J. (2024). Remote patient monitoring and management in nephrology: A systematic review. Nefrología. doi.org/10.1016/j.nefro.2024.01.005

Noncommunicable diseases. (2023). World Health Orgination (WHO). Retrieved from https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases

Patrick, J., Picard, F., Girerd, N., et al. (2023). Security and performance of remote patient monitoring for chronic heart failure with Satelia® Cardio: first results from real-world use. Journal of Cardiology and Cardiovascular Medicine; 8:042–50. doi:10.29328/journal.jccm.1001152

Peyroteo, M., Ferreira, I. A., Elvas, L. B., Ferreira, J. C., & Lapão, L. V. (2021). Remote Monitoring Systems for Patients With Chronic Diseases in Primary Health Care: Systematic Review. JMIR MHealth and UHealth; 9(12). doi.org/10.2196/28285

Polsky, M., Moraveji, N., Hendricks, A., Teresi, R. K., Murray, R., & Maselli D. J. (2023). Use of Remote Cardiorespiratory Monitoring is Associated with a Reduction in Hospitalizations for Subjects with COPD. International Journal of Chronic Obstructive Pulmonary Disease; 18:219-229. doi.org/10.2147/COPD.S388049

Sabatier, R., Legallois, D., Jodar, M., et al. (2022). Impact of patient engagement in a French telemonitoring programme for heart failure on hospitalization and mortality. ESC Heart Failure; 9(5):2886–2898. doi:10.1002/ehf2.13978

Telehealth Interventions to Improve Chronic Disease. (2024). Centers for Disease Control and Prevention (CDC). Retrieved from https://www.cdc.gov/cardiovascular-resources/php/data-research/telehealth.html

Zhang, Y., Peña, M. T., Fletcher, L. M., Lal, L., Swint, J. M., & Reneker, J. C. (2023). Economic evaluation and costs of remote patient monitoring for cardiovascular disease in the United States: a systematic review. International Journal of Technology Assessment in Health Care;39(1):e25. doi:10.1017/S0266462323000156